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ガロア（仏 Evariste Galois 1811～1832） 

 

  1811 年 10 月 25日、パリ郊外のブール・ラ・レーヌに生まれるが 

 1832 年 5月 31 日、銃による決闘に敗れ、20 歳 7 か月という若さで死亡 

 1830 年、後世に影響を与えることになる論文を発表 

・根号によって方程式が解けるための条件について（第 1論文） 

    [𝑆𝑢𝑟 𝑙𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑑𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑒 𝑑𝑒𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑎𝑟 𝑟𝑎𝑑𝑖𝑐𝑎𝑢𝑥]  

      ・根号によって解ける原始方程式（第 2 論文） 

    [𝐷𝑒𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 𝑞𝑢𝑖 𝑠𝑜𝑛𝑡 𝑠𝑜𝑙𝑢𝑏𝑙𝑒𝑠 𝑝𝑎𝑟 𝑟𝑎𝑑𝑖𝑐𝑎𝑢𝑥 ] 

    

 

 

 

 

 

 



 

   〖内容〗  

 

    〇 はじめに         (p3～p4 ) 

 

    〇 ３次方程式のガロア群    (p5～p18 ) 

《 𝑄 上既約な 3 次方程式 》 

(例 1) 𝑥3 − 21𝑥 + 14 = 0 のガロア群𝐺   (≅ 𝑆3) 

(例 2) 𝑥3 − 21𝑥 +  7 = 0 のガロア群𝐺   (≅ 𝐴3) 

《 𝑄 上可約な 3 次方程式 》 

(例 3) 𝑥3 − 21𝑥 + 36 = 0 のガロア群𝐺   (≅ 𝑆2) 

(例 4)  𝑥3 − 2𝑥2 − 𝑥 + 2 = 0 のガロア群𝐺   (≅ {𝑒}) 

 

〇 4 次方程式のガロア群    (p19～p45 ) 

《 𝑄 上既約な４次方程式 》 

(例 1) 𝑥4 + 2𝑥2 + 12𝑥 + 10 = 0  のガロア群𝐺   (≅ 𝑉) 

(例 2) 𝑥4 + 2𝑥2 + 8𝑥 + 11 = 0  のガロア群𝐺   (≅ 𝐷4) 

(例 3) 𝑥4 + 2𝑥2 + 8𝑥 + 9 = 0  のガロア群𝐺   (≅ 𝐴4) 

(例 4) 𝑥4 + 2𝑥2 + 8𝑥 + 16 = 0  のガロア群𝐺   (≅ 𝑆4) 

(例 5) 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0  のガロア群𝐺   (≅ 𝐶4) 

《 𝑄 上可約な４次方程式 》 

(例 6) 𝑥4 − 5𝑥2 + 6 = 0  のガロア群𝐺   (≅ 𝑉) 

(例 7) 𝑥4 − 𝑥3 + 𝑥2 − 1 = 0のガロア群𝐺   (≅ 𝑆3) 

(例 8) 𝑥4 + 𝑥2 + 1 = 0  のガロア群𝐺   (≅ 𝑆2) 

〇 引用、参考文献      (p46) 

 

       ３次方程式(𝑄 上既約)のガロア群    ４次方程式(𝑄 上既約)のガロア群     

                𝑆3                           𝑆4 

                         

                                                      𝐴4    

                𝐴3                           𝐷4         

                      

                                              𝐶4         𝑉   

  

 

 



はじめに。 

 

𝑥2 − 6𝑥 + 7 = 0  は有理数体 𝑄 上(𝑄の元を係数にもつ)では既約であるが 

𝑄 に√2 を添加した拡大体 𝐿 = 𝑄 (√2 )={𝑎 + 𝑏√2  | 𝑎, 𝑏 ∈ 𝑄} 上では、 

(𝑥 − (3 + √2)(𝑥 − (3 − √2)  と 1 次式の積に分解する。 

このとき、𝑄(√2)  から𝑄(√2) への自己同型写像  𝜎 (注 1)を考えると、 

  𝑎, 𝑏 ∈ 𝑄  に対し、𝜎(𝑎 + 𝑏√2) = 𝜎(𝑎) + 𝜎(𝑏√2) = 𝑎 + 𝑏𝜎(√2) 

ここで、𝜎(√2)2 = 𝜎(√2)𝜎(√2) = 𝜎(√2√2) = 𝜎(2) = 2 

∴ 𝜎(√2) = ±√2   ∴𝜎(𝑎 + 𝑏√2) = 𝑎 + 𝑏√2 または 𝑎 − 𝑏√2  

これより、𝜎 としては、 

    𝜎0 =  𝑖 ∶    𝑎 + 𝑏√2   →   𝑎 + 𝑏√2    (𝑎, 𝑏 ∈ 𝑄)  (単に√2 → √2 と略記) 

    𝜎1 = 𝜎 ∶    𝑎 + 𝑏√2   →   𝑎 − 𝑏√2   (𝑎, 𝑏 ∈ 𝑄)  (単に√2 → −√2 と略記) 

この｛𝑖  , 𝜎｝を 𝑥2 − 6𝑥 + 7 = 0 のガロア群 𝐺 = 𝐺(𝐿/𝑄)という。(注 2) 

これは、𝛼 = 𝑎 + 𝑏√2  , 𝛽 = 𝑎 − 𝑏√2  とすると、 

𝑖＝ (
𝛼 𝛽
𝛼 𝛽

) = (
1 2
1 2

)  ,   𝜎 = (
𝛼 𝛽
𝛽 𝛼

) = (
1 2
2 1

)   であり、 

{ 𝑖  , 𝜎｝≅ 𝑆2  (2 次対称群) 

これをガロア流(注 3)によって求めてみる。 

𝑥2 − 6𝑥 + 7 = 0 の解を 𝛼, 𝛽 とし、𝑉1 = α + 2β   (= V)とおくと、 

𝛼 + 𝛽 = 6 より  𝛼 = −𝑉1 + 12     , 𝛽 = 𝑉1 − 6    

また 𝑉2 = 𝛽 + 2𝛼  とおくと、𝛼 = 𝑉2 − 6     , 𝛽 = −𝑉2 + 12    

ここで、𝜑1(𝑥) = −𝑥 + 12    , 𝜑2(𝑥) = 𝑥 − 6   としたとき、 

     𝜑1(𝑉1) = −𝑉1 + 12 = 𝛼     , 𝜑2(𝑉1) = 𝑉1 − 6 = 𝛽       

    𝜑1(𝑉2) = −𝑉2 + 12 = 𝛽     , 𝜑2(𝑉2) = 𝑉2 − 6 = 𝛼       

よって 

 (
𝜑1(𝑉) 𝜑2(𝑉)

𝜑1(𝑉1) 𝜑2(𝑉1)
)=(

𝛼 𝛽
𝛼 𝛽

) = (
1 2
1 2

)     

        (
𝜑1(𝑉) 𝜑2(𝑉)
𝜑1(𝑉2) 𝜑2(𝑉2)

) = (
𝛼 𝛽
𝛽 𝛼

) = (
1 2
2 1

)          

   これらは、𝑆2 に同型。 

 

（注 1）𝐾を体、𝛼  , 𝛽 ∈ 𝐾 とし、𝐾からそれ自身への写像 𝜎 が 

               𝜎(𝛼 + 𝛽) = 𝜎(𝛼) + 𝜎(𝛽) , 𝜎(𝛼𝛽) = 𝜎(𝛼)𝜎(𝛽)  を満たすとき 

𝜎を自己同型写像という。自己同型写像全体からなる集合は、 



写像の合成で積を定義すれば、群をなす。単位元は恒等写像 𝑖 で 

逆元は逆写像、写像の合成は結合律を満たす。 

このとき、𝜎(0) = 0 , 𝜎(1) = 1 ,  𝜎(𝛼 − 𝛽) = 𝜎(𝛼) − 𝜎(𝛽)   

              𝜎(𝛼/𝛽) = 𝜎(𝛼)/𝜎(𝛽) が成り立つ。 

また、 𝑎 ∈ 𝑄 とすると𝜎(𝑎) = 𝑎  (注 9) 

( 𝑄の元「有理数」は、どのような自己同型写像 𝜎 でも不変) 

 

 

(注 2）𝐿を𝐾の拡大体とするとき、𝐿の自己同型写像のうち、𝐾の元を 

不変にするものを𝐿の𝐾上のガロア群といい、𝐺(𝐿/𝐾)で表す。 

体𝐾上の分離多項式𝑓(𝑥)の最小分解体𝐿の𝐾上のガロア群𝐺(𝐿/𝐾)を 

多項式𝑓(𝑥) (または方程式𝑓(𝑥) = 0 )のガロア群という。 

ここで、 

分解体： 

体𝐾上の既約多項式𝑓(𝑥)が𝐾の拡大体𝐿上では 1次因数の積に分解するとき 

𝐿を𝑓(𝑥)の分解体といい、そのうち最小のものを最小分解体という。 

たとえば、𝑄上既約な 𝑥2 − 6𝑥 + 7の最小分解体は𝑄(√2)である。 

分離多項式： 

多項式𝑓(𝑥)がある分解体の中で相異なる１次因数の積に分解されるとき、 

それを分離多項式という。𝑄上既約な多項式は、すべて分離多項式である。 

 

 (注 3) ガロアによる作り方（3 次の場合） 

  𝑓(𝑥) = 0  の解を𝛼 , 𝛽 , 𝛾  としたとき、これを使って、𝑉を構成する。 

  (たとえば、𝑉= 𝛼 + 2𝛽 + 3𝛾  ）。𝑆3 の 3!=6 通りの置換で𝑉の値を 

 入れ替えたものを𝑉1(= 𝑉), 𝑉2, … … . , 𝑉6とし、𝑉1, 𝑉2, … … . , 𝑉6 を解に 

もつ方程式𝐹(𝑥) = (𝑥 − 𝑉1) ∙∙∙∙∙∙∙∙ (𝑥 − 𝑉6) を作る。これが既約で 

ある場合と可約である場合に分かれるが既約である場合、 

  これより、𝛼 = 𝜑1(𝑉), 𝛽 =  𝜑2(𝑉), 𝛾 = 𝜑3(𝑉)  と表せて、 

  𝑉 を𝑉1, 𝑉2, … … . , 𝑉6 に変えることで、6 個の順列が得られる。 

この順列の生み出す置換群がガロア群である。 

 

 

 

 

 

 



 3 次方程式のガロア群 

 

3 次方程式 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 は、𝑥 = 𝑦 −
𝑏

3𝑎
   とおくことで 

𝑦3 + 𝑠𝑦 + 𝑡 = 0 の形に書けるので、有理数体 𝑄上(𝑄の元を係数にもつ)で 

既約な𝑥3 + 𝑝𝑥 + 𝑞 = 0 形のものを考えれば十分である。 

  𝑄上既約な𝑓(𝑥) = 𝑥3 + 𝑝𝑥 + 𝑞 = 0 において𝑓(𝑥) の最小分解体を 

  𝐿= 𝑄(𝛼, 𝛽, 𝛾) とし、𝑓(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)(𝑥 − 𝛾) とするとき 

  𝐷 =(𝛼 − 𝛽)2(𝛼 − 𝛾)2(𝛽 − 𝛾)2 とすれば、 

    𝛼 + 𝛽 + 𝛾 = 0  , 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑝  , 𝛼𝛽𝛾 = −𝑞  より 

𝐷=−4𝑝3 − 27𝑞2 となって、𝐷 ∈ 𝑄  

また、√𝐷 = (𝛼 − 𝛽)(𝛼 − 𝛾)(𝛽 − 𝛾) 

         =(𝛼2 − (𝛽 + 𝛾)𝛼 + 𝛽𝛾)(𝛽 − 𝛾) 

         =(𝑝 + 3𝛼2)(𝛽 − 𝛾) 

       ∴      𝛽 − 𝛾 = √𝐷(𝑝 + 3𝛼2)−1 

     一方、𝛽 + 𝛾 = −𝛼  

      ∴      𝛽 , 𝛾 ∈ 𝑄(𝛼, √𝐷) 

                       ∴      𝑄(𝛼, 𝛽, 𝛾) ⊆ 𝑄(𝛼, √𝐷) 

  逆は、√𝐷 = (𝛼 − 𝛽)(𝛼 − 𝛾)(𝛽 − 𝛾) より 

   ∴      𝑄(𝛼, √𝐷) ⊆ 𝑄(𝛼, 𝛽, 𝛾)  

                       ∴      𝑄(𝛼, 𝛽, 𝛾) = 𝑄(𝛼, √𝐷) 

ここで、𝑓(𝑥) = 0 のガロア群 𝐺(𝐿/𝑄)は、𝑆3の部分群に同型 

であって、その位数は 6の約数である。 

これにより、 

①  √𝐷 ∈ 𝑄 ならば、𝐿 = 𝑄(𝛼, √𝐷) = 𝑄(𝛼) となり 

              ( 𝐿/𝑄)=(𝑄(𝛼)/𝑄)=3  (注 4)  

     ∴ |𝐺(𝐿/𝑄)|=( 𝐿/𝑄)=3  (注 5) 

     ∴ 𝐺(𝐿/𝑄) ≅ 𝐴3    (位数が 3なのは 3次交代群) 

 

(注 4) (𝑳/𝑸)は、𝐿 を𝑄 上のベクトル空間とみたときの  𝐿 の𝑄 上の 

拡大次数を表す。[𝑳 ∶ 𝑸] と表すことも多いがここでは、 

以下  (𝑳/𝑸) のように表すことにする。 

たとえば、 √2 は𝑄上既約な最小多項式 

                       𝑥2 − 2 = 0 の解なので、(𝑄(√2)/𝑄)=2  

  



（注 5）𝐿 を𝐾 のガロア拡大(*)とするとき、 |𝐺(𝐿/𝐾)|=( 𝐿/𝐾) (**) 

すなわち、ガロア群の位数＝拡大次数 が成り立つ。 

(*) 体 𝐾上の既約多項式𝑓(𝑥)がその最小の分解体 𝐿 内で 

相異なる 1次因数の積に分解される（重解をもたない）とき 

         𝐿 を 𝐾 のガロア拡大という。 たとえば、𝜔 = (−1 + √−3)/ 2  

としたとき、𝑥3 − 2 = (𝑥 − √2
3

)(𝑥2 + √2
3

𝑥 + √4
3

) 

           = (𝑥 − √2
3

)(𝑥 − √2
3

𝜔)(𝑥 − √2
3

𝜔2)  なので  𝑄(√2
3

)は 

          𝑄のガロア拡大ではないが、𝑄(√2
3

 , 𝜔)は、𝑄 のガロア拡大。 

 

(**)たとえば、 𝐿 = 𝑄(√2, √3)  , 𝐾 = 𝑄 としたとき、 

         𝐿 = 𝑄(√2, √3) = (𝑄(√2)) (√3) = {𝑝 + 𝑞√3  | 𝑝, 𝑞 ∈ 𝑄(√2) }  

={𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  | 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ 𝑄}  からそれ自身へ 

の自己同型写像 𝜎 を考えると 

          𝜎(𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3) で 𝜎(√2) = √2 または−√2 、 

 𝜎(√3) = √3 または−√3 より、 

          𝜎0 ∶   𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  → 𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  

  （今後 √2 → √2   , √3 → √3  と略記) 

          𝜎1 ∶   𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  → 𝑎 − 𝑏√2 + 𝑐√3 − 𝑑√2√3  

  （今後 √2 → −√2   , √3 → √3  と略記)  

          𝜎2 ∶   𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  → 𝑎 + 𝑏√2 − 𝑐√3 − 𝑑√2√3  

 （今後 √2 → √2   , √3 → −√3  と略記)  

          𝜎3 ∶   𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√2√3  → 𝑎 − 𝑏√2 − 𝑐√3 + 𝑑√2√3  

  （今後 √2 → −√2   , √3 → −√3  と略記) 

 ∴ 𝐺(𝐿/𝐾)=𝐺(𝐿/𝑄)={ 𝜎0   , 𝜎1  , 𝜎2  , 𝜎3 }   ∴ |𝐺(𝐿/𝐾)|=4 

一方、𝐿 = {𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6  | 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ 𝑄} を 

           𝑄上のベクトル空間とみなしたときの基底は、1, √2, √3, √6 

の 4個であり、拡大次数は 4である。(***) 

∴ (𝐿/𝐾)=(𝐿/𝑄)=4   したがって、 |𝐺(𝐿/𝐾)|=( 𝐿/𝐾) 

(***) 次のことからもわかる。 

           𝛼 = √2 + √3 とすると 𝛼 ∈ 𝑄(√2, √3) ∴𝑄(𝛼) ⊆ 𝑄(√2, √3)  

 また、(𝛼 − √2)2 = 3   ∴  𝛼2 − 2√2𝛼 − 1 = 0    

          ∴ √2 = (𝛼2 − 1)/2𝛼    ∴ √2 ∈ 𝑄(𝛼)  

∴ √3 = 𝛼 − √2   ∈ 𝑄(𝛼)  ∴ 𝑄(√2, √3) ⊆ 𝑄(𝛼)  

したがって、𝐿 = 𝑄(√2, √3) = 𝑄(√2 + √3)  

ここで、𝛼 = √2 + √3 は、 𝑄 上既約な最小多項式 

           𝑥4 − 10𝑥2 + 1 = 0 の解であり、 (𝑄(√2 + √3)/𝑄)=4 



 

②  √𝐷 ∉ 𝑄 ならば、√𝐷 は、𝑄上既約な𝑥2 − 𝐷 = 0 の 

解と考えられ、(𝑄(√𝐷)/𝑄)=2 

∴ (𝐿/𝑄)=(𝑄(𝛼, √𝐷)/𝑄) 

           = (𝑄(𝛼, √𝐷)/𝑄(𝛼)) × (𝑄(𝛼)/𝑄) 

           =2× 3 = 6 

       ∴ |𝐺(𝐿/𝑄)|=(𝐿/𝑄)=6  

∴ 𝐺(𝐿/𝑄) ≅ 𝑆3  (位数が 6 なのは 3 次対称群) 

 

    ＜3 次方程式のガロア群_まとめ＞ 

    𝑄上既約な𝑓(𝑥) = 𝑥3 + 𝑝𝑥 + 𝑞 = 0 においては、 

     𝐷=−4𝑝3 − 27𝑞2 であって、𝐿 を𝑓(𝑥)の最小分解体とするとき 

①  √𝑫 ∈ 𝑸 ⟹ ガロア群G(L/ 𝑄)≅ 𝑨𝟑   

② √𝑫 ∉ 𝑸 ⟹ ガロア群Ｇ(L/ 𝑄)≅ 𝑺𝟑  

 

  ここで、 

   𝐴3 = {(
123
123

) , (
123
231

) , (
123
312

)} = 略して {( ) , (123) , (132)}   

      𝑆3 = {(
123
123

) , (
123
231

) , (
123
312

)  , (
123
132

)  , (
123
321

)  , (
123
213

)}    

         = 略して {( ) , (123) , (132) , (23) , (13) , (12)} 

 

 

例 1 𝑥3 − 21𝑥 + 14 = 0 (𝑄上既約)のガロア群 

<求め方 1＞ 

   𝐷 = −4 ∙ (−21)3 − 27 ∙ 142 = 31752 = 23 ∙ 34 ∙ 72    

 √𝐷 = 2 ∙ 32 ∙ 7 ∙ √2 = 126√2  ∉ 𝑄   

  ∴ 𝐺(𝐿/𝑄)  ≅ 𝑆3   

 

<求め方 2> 

 カルダノの公式（注 6）によれば 

 𝑥3 − 21𝑥 + 14 = 0 の解 𝑥1, 𝑥2, 𝑥3 は、 

  𝜔 = (−1 + √−3) ∕ 2     (𝜔3 = 1)  として 

  



      𝑥1=√−7 + √72 + (−7)3
3

+ √−7 − √72 + (−7)3
3

   

        =√−7 + √−294
3

 +√−7 − √−294
3   

       =√−7 + 7√−6
3

 +√−7 − 7√−6
3   

       𝑥2 =√−7 + 7√−6
3

∙ 𝜔 +√−7 − 7√−6
3

∙ 𝜔2  

       𝑥3 =√−7 + 7√−6
3

∙ 𝜔2 +√−7 − 7√−6
3

∙ 𝜔  

(注) √−7 − 7√−6
3

 =  
7

√−7+7√−6
3

   

  よって、𝑥3 − 21𝑥 + 14 の最小分解体 𝑄(𝑥1, 𝑥2,𝑥3,) = 𝑄 (𝜔, √−6 , √−7 + 7√−6
3

  )から 

それ自身への自己同型写像は、 

 𝑖  ∶ √−6  →  √−6 ,   √−7 + 7√−6
3

  → √−7 + 7√−6
3

   

                      (このとき √−7 − 7√−6
3

  → √−7 − 7√−6
3  ) 

 𝜎  ∶ √−6 →  √−6 ,   √−7 + 7√−6
3

  → √−7 + 7√−6
3

∙ 𝜔    

(このとき √−7 − 7√−6
3

  → √−7 − 7√−6
3  ∙ 𝜔2) 

 𝜎2  ∶ √−6 →  √−6 ,   √−7 + 7√−6
3

  → √−7 + 7√−6
3

∙ 𝜔2  

(このとき √−7 − 7√−6
3

  → √−7 − 7√−6
3  ∙ 𝜔) 

    𝜏  : √−6 → −√−6 ,   √−7 + 7√−6
3

  → √−7 − 7√−6
3

  

(このとき √−7 − 7√−6
3

  → √−7 + 7√−6
3  ) 

       𝜏𝜎  : √−6  → −√−6 ,   √−7 + 7√−6
3

  → √−7 − 7√−6
3

∙ 𝜔  

(このとき √−7 − 7√−6
3

  → √−7 + 7√−6
3

∙ 𝜔2 ) 

       𝜏𝜎2 : √−6 → −√−6 ,   √−7 + 7√−6
3

  → √−7 − 7√−6
3

∙ 𝜔2   

(このとき √−7 − 7√−6
3

  → √−7 + 7√−6
3

∙ 𝜔 ) 

    𝑖 = (
𝑥1𝑥2𝑥3

𝑥1𝑥2𝑥3
)     , 𝜎 = (

𝑥1𝑥2𝑥3

𝑥2𝑥3𝑥1
)  , 𝜎2 = (

𝑥1𝑥2𝑥3

𝑥3𝑥1𝑥2
) 

    𝜏 = (
𝑥1𝑥2𝑥3

𝑥1𝑥3𝑥2
)     , 𝜏𝜎 = (

𝑥1𝑥2𝑥3

𝑥3𝑥2𝑥1
)  , 𝜏𝜎2 = (

𝑥1𝑥2𝑥3

𝑥2𝑥1𝑥3
) 

よって、ガロア群は、 {𝑖 , 𝜎 , 𝜎2 , 𝜏 , 𝜏𝜎 , 𝜏𝜎2} ≅ 𝑆3    

 

（注 6）カルダノ(  𝐶𝑎𝑟𝑑𝑎𝑛𝑜 1501 − 1576 )の公式  

𝑥3 + 𝑝𝑥 + 𝑞 = 0    (𝑥3 = −𝑝𝑥 − 𝑞) の解 𝑥1, 𝑥2, 𝑥3 は、 

     𝑥 = 𝑢 + 𝑣 とおくと 



     𝑥3 = 𝑢3 + 𝑣3 + 3𝑢𝑣(𝑢 + 𝑣) = 3𝑢𝑣𝑥 + 𝑢3 + 𝑣3  

          ∴    {
3𝑢𝑣 = −𝑝

𝑢3 + 𝑣3 = −𝑞
       

          ∴    {
𝑢3𝑣3 = (−

𝑝

3
)3

𝑢3 + 𝑣3 = −𝑞
    

        𝑢3と𝑣3 は 𝑡2 + 𝑞𝑡 − (
𝑝

3
)3 = 0  の解で 

     𝑢3 = −
𝑞

2
+ √(

𝑞

2
)2 + (

𝑝

3
)3 

          𝑣3 = −
𝑞

2
− √(

𝑞

2
)2 + (

𝑝

3
)3 

  𝑢, 𝑣  は  𝑢 ∙ 𝑣 = −
𝑝

3
   となるものを選ぶとして、 

  𝑢 = 𝑢  , 𝑢𝜔  , 𝑢𝜔2  , 𝑣 = 𝑣  , 𝑣𝜔   , 𝑣𝜔2 より 

         𝑥1 = 𝑢 + 𝑣    

       𝑥2 = 𝑢𝜔 + 𝑣𝜔2 (= 𝑢𝜔 + 𝑣𝜔−1)  

                 𝑥3 = 𝑢𝜔2 + 𝑣𝜔 (= 𝑢𝜔2 + 𝑣𝜔−2)    

 

<求め方 3＞ ガロア流 

   𝑥3 − 21𝑥 + 14 = 0 の解を𝛼 , 𝛽 , 𝛾 とすると 

    𝛼 + 𝛽 + 𝛾 = 0 ,     𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = −21 ,    𝛼𝛽𝛾 = −14   

      ここで、 

      𝑉1 = 𝛼 + 2𝛽 + 3𝛾      𝑉2 = 𝛼 + 2𝛾 + 3𝛽  

      𝑉3 = 𝛽 + 2𝛼 + 3𝛾      𝑉4 = 𝛽 + 2𝛾 + 3𝛼  

      𝑉5 = 𝛾 + 2𝛼 + 3𝛽      𝑉6 = 𝛾 + 2𝛽 + 3𝛼 とし、 

 𝐹(𝑉) = (𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉 − 𝑉3)(𝑉 − 𝑉4)(𝑉 − 𝑉5)(𝑉 − 𝑉6)とおくと 

 𝐹(𝑉) = 𝑉6 − 126𝑉4 + 3969𝑉2 − 31752     (既約) 

    （#この計算などにはコンピュ－タ－ を利用）   

 

  < 𝛼 を𝑉 で表す> 

  𝐹(𝑉, 𝛼) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾  ))(𝑉 − ( 𝛼 + 2𝛾 + 3𝛽  )) とし（𝛼 を固定） 

 𝐹(𝑉, 𝑥) = (𝑉 − ( 𝑥 + 2𝛽 + 3𝛾  ))(𝑉 − ( 𝑥 + 2𝛾 + 3𝛽  )) とすると 

 𝐹(𝑉, 𝑥) = 3𝑥2 + 3𝑉𝑥 + 𝑉2 − 21  (既約)となる。 

これと 𝑥3 − 21𝑥 + 14 = 0 は唯一の共通解 𝛼 をもつから、 

互除法の考え (注 7) を用いると、  

 𝑥3 − 21𝑥 + 14 = 0 を 3𝑥2 + 3𝑉𝑥 + 𝑉2 − 21で割った余りの 

1 次式 (
2𝑉2

3
− 14) 𝑥 +

𝑉3

3
− 7𝑉 + 14 を 0 とおいて 𝑥 について解いた 



ものが 𝛼 である。すなわち、𝛼 =
𝑉3−21𝑉+42

42−2𝑉2 =
1

2
∙

𝑉3−21𝑉+42

21−𝑉2    

 ここで、𝑉(= 𝑉1) において 

  0 = 𝑉6 − 126𝑉4 + 3969𝑉2 − 31752        

         = (−𝑉4 + 105𝑉2 − 1764)(21 − 𝑉2) + 5292  

よって 

       
1

21 − 𝑉2 =
1

5292
∙ (𝑉4 − 105𝑉2 + 1764)  

      これより、 

       𝛼 =
1

2
∙ (

1

5292
) ∙ (𝑉3 − 21𝑉 + 42)(𝑉4 − 105𝑉2 + 1764) 

          =
1

10584
(𝑉7 − 126𝑉5 + 42𝑉4 + 3969𝑉3 − 4410𝑉2 − 37044𝑉 + 74088)   

     =
1

252
(𝑉4 − 105𝑉2 − 126𝑉 + 1764)  

 

(注 7) ユ－クリッド(𝐸𝑢𝑐𝑙𝑖𝑑 , 𝐵𝐶330? −275? )の互除法  

(具体例をあげて示す) 

 𝑓(𝑥) = 3𝑥5 + 𝑥4 − 2𝑥3 − 6𝑥2 − 2𝑥 + 4 (= 0) と  

      𝑔(𝑥) = 3𝑥4 − 5𝑥3 + 5𝑥2 − 5𝑥 + 2 (= 0)  は、 

 ただ 1 つの共通解 𝑥 = 2/3  をもつが、このことを 

 𝑓(𝑥) と𝑔(𝑥) の最大公約式が (3𝑥 − 2) であると解釈すると 

 次のようにユークリッドの互除法で求まる。 

 𝑓(𝑥) = (𝑥 + 2)𝑔(𝑥) + 𝑟1(𝑥)     ;  𝑟1(𝑥) =  3𝑥3 − 11𝑥2 + 6𝑥   

  𝑔(𝑥) = (𝑥 + 2)𝑟1(𝑥) + 𝑟2(𝑥)    ; 𝑟2(𝑥) = 21𝑥2 − 17𝑥 + 2   

          𝑟1(𝑥) = (
𝑥

7
−

20

49
) 𝑟2(𝑥) + 𝑟3(𝑥)    ;  𝑟3(𝑥) =

40

49
−

60𝑥

49
       

          𝑟2(𝑥) = (
49

20
−

343𝑥

20
) 𝑟3(𝑥) + 0     

               =
−20

49
(

49

20
−

343𝑥

20
) (3𝑥 − 2) + 0     

  これより、最大公約式が (3𝑥 − 2) であり、これを 0 

 とおいて解いたものが共通解 𝑥 = 2/3  である。 

 

< 𝛽 を𝑉 で表す> 

    𝐺(𝑉, 𝛽) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾))(𝑉 − (𝛾 + 2𝛽 + 3𝛼)) とし（𝛽 を固定） 



   𝐺(𝑉, 𝑥) = (𝑉 − ( 𝛼 + 2𝑥 + 3𝛾))(𝑉 − (𝛾 + 2𝑥 + 3𝛼)) とすると 

 𝐺(𝑉, 𝑥) = 3𝑥2 + 𝑉2 − 84   となる。 

このあとは、𝛼 を𝑉 で表したときと同様にして 

     𝛽 =
−42

21 − 𝑉2 = −42 ∙
1

5292
∙ (𝑉4 − 105𝑉2 + 1764)   

=
1

252
(−2𝑉4 + 210𝑉2 − 3528)   

 

< 𝛾 を𝑉 で表す> 

   𝐻(𝑉, 𝛾) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾  ))(𝑉 − (𝛽 + 2𝛼 + 3𝛾)) とし（𝛾 を固定） 

       𝐻(𝑉, 𝑥) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝑥  ))(𝑉 − (𝛽 + 2𝛼 + 3𝑥)) とすると 

 𝐻(𝑉, 𝑥) = 3𝑥2 − 3𝑉𝑥 + 𝑉2 − 21   となる。 

このあとは、𝛼 を𝑉 で表したときと同様にして 

       γ =
1

2
∙

−𝑉3 + 21𝑉 + 42

21 − 𝑉2
 

=
1

2
∙

1

5292
∙ (−𝑉3 + 21𝑉 + 42)(𝑉4 − 105𝑉2 + 1764)  

                  =
1

10584
(−𝑉7 + 126𝑉5 + 42𝑉4 − 3969𝑉3 − 4410𝑉2 + 37044𝑉 + 74088)    

               =
1

252
(𝑉4 − 105𝑉2 + 126𝑉 + 1764) 

以上、まとめると 

            𝛼 =  
1

252
(𝑉4 − 105𝑉2 − 126𝑉 + 1764)  

            𝛽 =  
1

252
(−2𝑉4 + 210𝑉2 − 3528)   

             γ =  
1

252
(𝑉4 − 105𝑉2 + 126𝑉 + 1764) 

（ただし、𝑉6 − 126𝑉4 + 3969𝑉2 − 31752 = 0 ） 

これより、 

𝑉1 = 𝛼 + 2𝛽 + 3𝛾   = 𝑉          

𝑉2 = 𝛼 + 2𝛾 + 3𝛽= 
1

84
(−𝑉4 + 105𝑉2 + 42𝑉 − 1764)   

      𝑉3 = 𝛽 + 2𝛼 + 3𝛾 = 
1

84
(𝑉4 − 105𝑉2 + 42𝑉 + 1764)    

 𝑉4 = 𝛽 + 2𝛾 + 3𝛼 =
1

84
(𝑉4 − 105𝑉2 − 42𝑉 + 1764) 

 𝑉5 = 𝛾 + 2𝛼 + 3𝛽=
1

84
(−𝑉4 + 105𝑉2 − 42𝑉 − 1764)      

 𝑉6 = 𝛾 + 2𝛽 + 3𝛼 = −𝑉   

 



ここで、 

   𝜑1(𝑥) =
1

252
(𝑥4 − 105𝑥2 − 126𝑥 + 1764) 

     𝜑2(𝑥) =  
1

252
(−2𝑥4 + 210𝑥2 − 3528)     

    𝜑3(𝑥) =  
1

252
(𝑥4 − 105𝑥2 + 126𝑥 + 1764)    

とおくと、( 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 を利用して) 

     𝜑1(𝑉1) = 𝛼    , 𝜑2(𝑉1) = 𝛽     , 𝜑3(𝑉1) = 𝛾      

     𝜑1(𝑉2) = 𝛼    , 𝜑2(𝑉2) = 𝛾     , 𝜑3(𝑉2) = 𝛽 

     𝜑1(𝑉3) = 𝛽    , 𝜑2(𝑉3) = 𝛼     , 𝜑3(𝑉3) = 𝛾 

     𝜑1(𝑉4) = 𝛽    , 𝜑2(𝑉4) = 𝛾     , 𝜑3(𝑉4) = 𝛼 

     𝜑1(𝑉5) = 𝛾    , 𝜑2(𝑉5) = 𝛼     , 𝜑3(𝑉5) = 𝛽 

     𝜑1(𝑉6) = 𝛾    , 𝜑2(𝑉6) = 𝛽     , 𝜑3(𝑉6) = 𝛼    

これらより 

 (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉1) 𝜑2(𝑉1)   𝜑3(𝑉1)

)=(
𝛼 𝛽   𝛾
𝛼 𝛽   𝛾

) = (
1  2  3
1  2  3

) 

 (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉2) 𝜑2(𝑉2)   𝜑3(𝑉2)

)=(
𝛼 𝛽   𝛾
𝛼 𝛾   𝛽

) = (
1  2  3
1  3  2

) 

 (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)

𝜑1(𝑉3) 𝜑2(𝑉3)   𝜑3(𝑉3)
)=(

𝛼  𝛽   𝛾
𝛽  𝛼   𝛾

) = (
1  2  3
2  1  3

) 

       (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉4) 𝜑2(𝑉4)   𝜑3(𝑉4)

)=(
𝛼  𝛽   𝛾
𝛽  𝛾   𝛼

) = (
1  2  3
2  3  1

) 

       (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉5) 𝜑2(𝑉5)   𝜑3(𝑉5)

)=(
𝛼  𝛽  𝛾
𝛾  𝛼  𝛽

) = (
1  2  3
3  1  2

) 

       (
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉6) 𝜑2(𝑉6)   𝜑3(𝑉6)

)=(
𝛼  𝛽  𝛾
𝛾  𝛽  𝛼

) = (
1  2  3
3  2  1

)    

 

これらガロア群は、𝑆3  に同型 

 

例 2 𝑥3 − 21𝑥 + 7 = 0 (𝑄上既約)のガロア群 

<求め方 1＞ 

   𝐷 = −4 ∙ (−21)3 − 27 ∙ 72 = 35721 = 36 ∙ 72  

 √𝐷 = 33 ∙ 7=189 ∈ 𝑄   

  ∴ 𝐺(𝐿/𝑄)≅ 𝐴3   



 

<求め方 2> 

カルダノの公式によれば 

 𝑥3 − 21𝑥 + 7 = 0  の解 𝑥1, 𝑥2, 𝑥3 は、 

      𝜔 = (−1 + √−3) 2⁄      (𝜔2 = (−1 − √−3)/2  ) として 

   𝑥1 = √−
7

2
+ √(

7

2
)2 + (−7)3

3

 + √−
7

2
− √(

7

2
)2 + (−7)3

3

    

             = √−
7

2
+

21

2
√−3

3

  + √−
7

2
−

21

2
√−3

3

   

             = √−
7

2
+

21

2
(2𝜔 + 1)

3

  + √−
7

2
−

21

2
(−2𝜔2 − 1)

3

 

             = √(21𝜔 + 7)3
  + √(21𝜔2 + 7)3

        

        𝑥2 = √(21𝜔 + 7)
3

∙ 𝜔 + √(21𝜔2 + 7)
3

∙ 𝜔2   

       𝑥3 = √(21𝜔 + 7)3 ∙ 𝜔2  + √(21𝜔2 + 7)3
∙ 𝜔  

       （注）  √(21𝜔2 + 7)3
= 

7

√(21𝜔+7)3  

 よって、𝑥3 − 21𝑥 + 7 の最小分解体 𝑄(𝑥1, 𝑥2,𝑥3,) = 𝑄(𝜔 , √(21𝜔 + 7)3  )から 

それ自身への自己同型写像は、 

 𝑖  ∶  √(21𝜔 + 7)3   → √(21𝜔 + 7)3            

 𝜎  ∶  √(21𝜔 + 7)3   → √(21𝜔 + 7)3 ∙ 𝜔     

     (このとき、√(21𝜔2 + 7)3
  →   √(21𝜔2 + 7)3

  ∙ 𝜔2  ) 

 𝜎2  ∶  √(21𝜔 + 7)3   → √(21𝜔 + 7)3 ∙ 𝜔2   

(このとき、√(21𝜔2 + 7)3
  →   √(21𝜔2 + 7)3

  ∙ 𝜔    ) 

      

    𝑖 = (
𝑥1𝑥2𝑥3

𝑥1𝑥2𝑥3
)     , 𝜎 = (

𝑥1𝑥2𝑥3

𝑥2𝑥3𝑥1
)  , 𝜎2 = (

𝑥1𝑥2𝑥3

𝑥3𝑥1𝑥2
) 

      

よって、ガロア群は、 {𝑖 , 𝜎 , 𝜎2 } ≅ 𝐴3    

  

<求め方 3＞ ガロア流 ( 例 1 と同様) 

    𝑥3 − 21𝑥 + 7 = 0 の解を𝛼 , 𝛽 , 𝛾 とすると 



    𝛼 + 𝛽 + 𝛾 = 0 ,     𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = −21 ,    𝛼𝛽𝛾 = −7   

      ここで、 

      𝑉1 = 𝛼 + 2𝛽 + 3𝛾      𝑉2 = 𝛼 + 2𝛾 + 3𝛽  

      𝑉3 = 𝛽 + 2𝛼 + 3𝛾      𝑉4 = 𝛽 + 2𝛾 + 3𝛼  

      𝑉5 = 𝛾 + 2𝛼 + 3𝛽      𝑉6 = 𝛾 + 2𝛽 + 3𝛼 とし、 

    𝐹(𝑉) = (𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉 − 𝑉3)(𝑉 − 𝑉4)(𝑉 − 𝑉5)(𝑉 − 𝑉6)とおくと 

    𝐹(𝑉) = 𝑉6 − 126𝑉4 + 3969𝑉2 − 35721  

       =(𝑉3 − 63𝑉 − 189)(𝑉3 − 63𝑉 + 189)  

    （＃この計算などにはコンピュ－タ－ を利用） 

 

  < 𝛼 を𝑉 で表す> 

  𝐹(𝑉, 𝛼) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾  ))(𝑉 − ( 𝛼 + 2𝛾 + 3𝛽  )) とし（𝛼 を固定） 

 𝐹(𝑉, 𝑥) = (𝑉 − ( 𝑥 + 2𝛽 + 3𝛾  ))(𝑉 − ( 𝑥 + 2𝛾 + 3𝛽  )) とすると 

 𝐹(𝑉, 𝑥) = 3𝑥2 + 3𝑉𝑥 + 𝑉2 − 21   となる 

 これと𝑥3 − 21𝑥 + 7 = 0 は唯一の共通解 𝛼 をもつから、 

互除法の考えを用いると、 

 𝑥3 − 21𝑥 + 7 = 0 を3𝑥2 + 3𝑉𝑥 + 𝑉2 − 21で割った余りの 

1 次式 (
2𝑉2

3
− 14) 𝑥 +

𝑉3

3
− 7𝑉 + 7 を 0 とおいて 𝑥 について 

解いたものが 𝛼 である。 

すなわち、𝛼 =
𝑉3−21𝑉+21

42−2𝑉2 =
1

2
∙

𝑉3−21𝑉+21

21−𝑉2     

 ここで、𝑉(= 𝑉1) を仮に 𝑉3 − 63𝑉 − 189 = 0 の解とすると(注 8） 

      0 = 𝑉3 − 63𝑉 − 189 = −𝑉(21 − 𝑉2) + (−42𝑉 − 189)        

      0 = 𝑉3 − 63𝑉 − 189 = (−
1

42
𝑉2 +

3

28
𝑉 +

57

56
) (−42𝑉 − 189) +

27

8
  

これら 2 式より、 

       
1

21 − 𝑉2
= −

8

27
𝑉 (−

1

42
𝑉2 +

3

28
𝑉 +

57

56
) = −

2

63
𝑉2 +

1

7
𝑉 +

4

3
   

      これより、 

       𝛼 =
1

2
∙

𝑉3 − 21𝑉 + 21

21 − 𝑉2
=

1

2
∙ (𝑉3 − 21𝑉 + 21)(−

2

63
𝑉2 +

1

7
𝑉 +

4

3
  ) 

         =
1

126
(−2𝑉5 + 9𝑉4 + 126𝑉3 − 231𝑉2 − 1575𝑉 + 1764)   

         =  −
1

3
𝑉2 + 𝑉 + 14  



 

< 𝛽 を𝑉 で表す> 

  𝐺(𝑉, 𝛽) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾  ))(𝑉 − (𝛾 + 2𝛽 + 3𝛼  )) とし（𝛽 を固定） 

 𝐺(𝑉, 𝑥) = (𝑉 − ( 𝛼 + 2𝑥 + 3𝛾  ))(𝑉 − (𝛾 + 2𝑥 + 3𝛼  )) とすると 

 𝐺(𝑉, 𝑥) = 3𝑥2 + 𝑉2 − 84   となる。 

このあとは、𝛼 を𝑉 で表したときと同様にして 

   𝛽 =
−21

21 − 𝑉2 = −21 ∙ (−
2

63
𝑉2 +

1

7
𝑉 +

4

3
 )   

              =
2

3
𝑉2 − 3𝑉 − 28  

 

< 𝛾 を𝑉 で表す> 

  𝐻(𝑉, 𝛾) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝛾  ))(𝑉 − (𝛽 + 2𝛼 + 3𝛾)) とし（𝛾 を固定） 

    𝐻(𝑉, 𝑥) = (𝑉 − ( 𝛼 + 2𝛽 + 3𝑥  ))(𝑉 − (𝛽 + 2𝛼 + 3𝑥)) とすると 

 𝐻(𝑉, 𝑥) = 3𝑥2 − 3𝑉𝑥 + 𝑉2 − 21   となる。 

このあとは、𝛼 を𝑉 で表したときと同様にして 

    γ =
1

2
∙

−𝑉3 + 21𝑉 + 21

21 − 𝑉2
 

           =
1

2
(−𝑉3 + 21𝑉 + 21)( −

2

63
𝑉2 +

1

7
𝑉 +

4

3
 )  

             =
1

126
(2𝑉5 − 9𝑉4 − 126𝑉3 + 147𝑉2 + 1953𝑉 + 1764)    

            = −
1

3
𝑉2 + 2𝑉 + 14    

以上、まとめると 

           𝛼 =   −
1

3
𝑉2 + 𝑉 + 14  

          𝛽 =  
2

3
𝑉2 − 3𝑉 − 28  

           γ =  −
1

3
𝑉2 + 2𝑉 + 14  

  (注意、𝑉3 − 63𝑉 − 189 = 0 ) 

これより、 

           𝑉1 = 𝛼 + 2𝛽 + 3𝛾   = 𝑉          

           𝑉2 = 𝛼 + 2𝛾 + 3𝛽= 𝑉2 − 4𝑉 − 42  



      𝑉3 = 𝛽 + 2𝛼 + 3𝛾 = −𝑉2 + 5𝑉 + 42      

 𝑉4 = 𝛽 + 2𝛾 + 3𝛼 =−𝑉2 + 4𝑉 + 42 

 𝑉5 = 𝛾 + 2𝛼 + 3𝛽= 𝑉2 − 5𝑉 − 42      

 𝑉6 = 𝛾 + 2𝛽 + 3𝛼 = −𝑉  

これらの中で𝑉3 − 63𝑉 − 189 = 0  を満たすのは 

      𝑉 = 𝑉1  , 𝑉4    ,𝑉5 で 

              𝜑1(𝑥) = −
1

3
𝑥2 + 𝑥 + 14    

              𝜑2(𝑥) =  
2

3
𝑥2 − 3𝑥 − 28   

              𝜑3(𝑥) = −
1

3
𝑥2 + 2𝑥 + 14    

とおくと 

            𝜑1(𝑉1) = 𝛼      , 𝜑2(𝑉1) = 𝛽       , 𝜑3(𝑉1) = 𝛾      

            𝜑1(𝑉4) = 𝛽      , 𝜑2(𝑉4) = 𝛾        , 𝜑3(𝑉4) = 𝛼  

            𝜑1(𝑉5) = 𝛾      , 𝜑2(𝑉5) = 𝛼        , 𝜑3(𝑉5) = 𝛽 

これらより 

(
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉1) 𝜑2(𝑉1)   𝜑3(𝑉1)

)=(
𝛼 𝛽  𝛾
𝛼 𝛽  𝛾

) = (
1 2  3
1 2  3

)   

(
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉4) 𝜑2(𝑉4)   𝜑3(𝑉4)

)=(
𝛼 𝛽  𝛾
𝛽 𝛾  𝛼

) = (
1 2  3
2 3  1

) 

(
𝜑1(𝑉) 𝜑2(𝑉)   𝜑3(𝑉)
𝜑1(𝑉5) 𝜑2(𝑉5)   𝜑3(𝑉5)

)=(
𝛼 𝛽  𝛾
𝛾 𝛼  𝛽

) = (
1 2  3
3 1  2

) 

 

これらガロア群は、𝐴3 に同型。 

（注意）実は、このことは 𝑉1  , 𝑉4    ,𝑉5 の解の置換を 

 考えればすぐにわかることである。たとえば  

   𝑉1 で α → β , β → γ , γ → α としたものが 𝑉4  

 

(注 8） 

         𝑉(= 𝑉1) が  𝑉3 − 63𝑉 − 189 = 0  と  𝑉3 − 63𝑉 + 189 = 0 の 

どちらの式の解かは不明であるがどちらにしても一般性を 

失わない。その式の解に𝑉(= 𝑉1) が入っていなくても、𝐹(𝑉)  

の作り方から解は 𝑉1 ～ 𝑉6 のどれかであり、𝛼  , 𝛽  , 𝛾  の 

命名を適当にやり直せば  𝑉1 = 𝛼 + 2𝛽 + 3𝛾 がその式の解に 

なるようにできるから。 



ちなみに、𝑉(= 𝑉1) が  𝑉3 − 63𝑉 + 189 = 0 の方の解とすると、 

      𝛼 =
𝑉3−21𝑉+21

42−2𝑉2 =
1

2
∙

𝑉3−21𝑉+21

21−𝑉2    は 

      0 = 𝑉3 − 63𝑉 + 189 = −𝑉(21 − 𝑉2) + 189 − 42𝑉        

        0 = 𝑉3 − 63𝑉 + 189 =  (189 − 42𝑉) (
57

56
−

3

28
𝑉 −

1

42
𝑉2) + (−

27

8
)   

 これら 2 式より、 

         
1

21 − 𝑉2 =
8

27
𝑉 (

57
56

−
3

28
𝑉 −

1
42

𝑉2
)   

 よって、  

            𝛼 =
1

2
∙

𝑉3 − 21𝑉 + 21

21 − 𝑉2
 

       =
1

2
(𝑉3 − 21𝑉 + 21) (

8

27
𝑉) (

57

56
−

3

28
𝑉 −

1

42
𝑉2) 

                =∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

                = −
1

3
𝑉2 − 2𝑉 + 14 

同様に考えて 

     𝛽 =  
2

3
𝑉2 + 3𝑉 − 28 

     𝛾 = −
1

3
𝑉2 − 𝑉 + 14   

 

例 3 𝑥3 − 21𝑥 + 36 = 0 (𝑄上可約)のガロア群 

<求め方> 

 𝑥3 − 21𝑥 + 36 = 0 は、 

   (𝑥 − 3)(𝑥2 + 3𝑥 − 12) = 0 となるが、 

     𝑥1 = 3 は、𝑄 の元なので自己同型写像で不変(注 9)であり、 

    𝑥2 = (−3 + √57)/2 ,   𝑥3 = (−3 − √57)/2  ( =−3 − 𝑥2) とすれば   

     𝑥3 − 21𝑥 + 36 = (𝑥 − 3)(𝑥 − 𝑥2)(𝑥 − 𝑥3)  でこれの最小分解体 𝐿 は、 

     𝐿 = 𝑄(𝑥2) = 𝑄(√57) でガロア群は  𝐺 = 𝐺(𝐿/𝑄) = {𝑖  , 𝜎} 

     ただし、𝑖 ∶ √57 → √57   ,  𝜎 ∶ √57 → −√57   

             𝑖 = (
𝑥1  𝑥2 𝑥3

𝑥1  𝑥2 𝑥3
)    ,  𝜎 = (

𝑥1  𝑥2 𝑥3

𝑥1  𝑥3 𝑥2
) 

     これは、 𝑆2  に同型 

 



   (注 9) 

              𝐾を体、𝛼  , 𝛽 ∈ 𝐾 とし、𝐾からそれ自身への自己同型写像を 𝜎 と 

   すると、𝜎(0) = 𝜎(0 + 0) = 𝜎(0) + 𝜎(0)    ∴     𝜎(0) = 0 

                                𝜎(1) = 𝜎(1 × 1) = 𝜎(1)𝜎(1)          ∴ 𝜎(1) = 1   

      また、 𝛼  , 𝛽 ∈ 𝐾 より、𝛼 − 𝛽 ∈ 𝐾   , 𝛼/𝛽 ∈ 𝐾  で 

              𝜎(𝛼) = 𝜎(𝛽 + (𝛼 − 𝛽)) = 𝜎(𝛽) + 𝜎(𝛼 − 𝛽)   より、 

                  𝜎(𝛼 − 𝛽) = 𝜎(𝛼) − 𝜎(𝛽)   

              𝜎(𝛼) = 𝜎 (𝛽 ×
𝛼

𝛽
) = 𝜎(𝛽)𝜎 (

𝛼

𝛽
)   より、𝜎 (

𝛼

𝛽
) =

𝜎(𝛼)

𝜎(𝛽)
    

      これらにより、たとえば、 

   𝜎(3) = 𝜎(1 + 1 + 1) = 𝜎(1) + 𝜎(1) + 𝜎(1) = 1 + 1 + 1 = 3     

      𝜎(−3) = 𝜎(0 − 3) = 𝜎(0) − 𝜎(3) = 0 − 3 = −3 

              𝜎 (
3

5
) =

𝜎(3)

𝜎(5)
=

3

5
      , 𝜎 (−

3

5
) =   𝜎 (

−3

5
) =

𝜎(−3)

𝜎(5)
=

−3

5
= −

3

5
     

      したがって、𝑎 ∈ 𝑄 とすると𝜎(𝑎) = 𝑎    

 

例 4 𝑥3 − 2𝑥2 − 𝑥 + 2 = 0 (𝑄上可約)のガロア群 

<求め方> 

 𝑥3 − 2𝑥2 − 𝑥 + 2 = 0 は、 

   (𝑥 + 1)(𝑥 − 1)(𝑥 − 2) = 0 で 

    𝑥1 = −1  ,  𝑥2 = 1   , 𝑥3 = 2    とすれば  

      𝑥3 − 2𝑥2 − 𝑥 + 2 = 0   の最小分解体 𝐿 は、 

     𝐿 = 𝑄 でガロア群は  𝐺 = { 𝑖  }  

     ただし、𝑖 = (
𝑥1𝑥2𝑥3

𝑥1𝑥2𝑥3
)     

     これは、単位群( { 𝑖 }や{ 𝑒 } 、( ) などで表す)と同型。 

 

 

 

 

 

 

 

 

 



  4 次方程式のガロア群 

 

4 次方程式𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0  は、𝑥 = 𝑦 −
𝑏

4𝑎
  とおくことで 

𝑦4 + 𝑠𝑦2 + 𝑡𝑦 + 𝑢 = 0  の形に書けるので、有理数体 𝑄 上で既約な 

𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 の形のものを考えれば十分である。 

   𝑄 上既約な𝑓(𝑥) = 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 において、𝑓(𝑥) の最小分解体を 

  𝐿 = 𝑄(𝛼1, 𝛼2, 𝛼3, 𝛼4) とし、𝑓(𝑥) = (𝑥 − 𝛼1)(𝑥 − 𝛼2)(𝑥 − 𝛼3)(𝑥 − 𝛼4)      

  𝐷 = (𝛼1 − 𝛼2)2(𝛼1 − 𝛼3)2(𝛼1 − 𝛼4)2(𝛼2 − 𝛼3)2(𝛼2 − 𝛼4)2(𝛼3 − 𝛼4)2   

    とする。 

  さらに、𝜃1 = (𝛼1 + 𝛼2)(𝛼3 + 𝛼4)   

            𝜃2 = (𝛼1 + 𝛼3)(𝛼2 + 𝛼4) 

            𝜃3 = (𝛼1 + 𝛼4)(𝛼2 + 𝛼3) とすると 

   𝜃1 , 𝜃2 , 𝜃3  ∈  𝐿 = 𝑄(𝛼1, 𝛼2, 𝛼3, 𝛼4) で  

   𝜃1 − 𝜃2 = −(𝛼1 − 𝛼4)(𝛼2 − 𝛼3)  

   𝜃1 − 𝜃3 = −(𝛼1 − 𝛼3)(𝛼2 − 𝛼4)  

   𝜃2 − 𝜃3 = −(𝛼1 − 𝛼2)(𝛼3 − 𝛼4) 

      これより、 

      𝐷′ = (𝜃1 − 𝜃2)2(𝜃1 − 𝜃3)2(𝜃2 − 𝜃3)2 

    = (𝛼1 − 𝛼2)2(𝛼1 − 𝛼3)2(𝛼1 − 𝛼4)2(𝛼2 − 𝛼3)2(𝛼2 − 𝛼4)2(𝛼3 − 𝛼4)2 

    = 𝐷   

   ここで、 

  𝑔(𝑥) = (𝑥 − 𝜃1)(𝑥 − 𝜃2)(𝑥 − 𝜃3)  を考えると 

  𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 0  , 𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼1𝛼4 + 𝛼2𝛼3 + 𝛼2𝛼4 + 𝛼3𝛼4 = 𝑝    

     𝛼1𝛼2𝛼3 + 𝛼1𝛼2𝛼4 + 𝛼1𝛼3𝛼4 + 𝛼2𝛼3𝛼4 = −𝑞  , 𝛼1𝛼2𝛼3𝛼4 = 𝑟   より、 

  𝜃1 + 𝜃2 + 𝜃3 = 2𝑝  

      𝜃1𝜃2 + 𝜃1𝜃3 + 𝜃2𝜃3 = 𝑝2 − 4𝑟  

      𝜃1𝜃2𝜃3 = −𝑞2   

    よって、 

  𝑔(𝑥) = 𝑥3 − 2𝑝𝑥2 + (𝑝2 − 4𝑟)𝑥 + 𝑞2     

     (# これを𝑓(𝑥) 分解多項式という） 

  また、 

  𝐷′ = 𝐷 = 16𝑝4𝑟 − 4𝑝3𝑞2 − 128𝑝2𝑟2 + 144𝑝𝑞2𝑟 − 27𝑞4 + 256𝑟3 

  また、𝜃1 , 𝜃2 , 𝜃3 は、 𝛼1 , 𝛼2 , 𝛼3 , 𝛼4  を使って書けるから 



  𝑄 ⊆ 𝑄(𝜃1, 𝜃2, 𝜃3) ⊆ 𝑄(𝛼1, 𝛼2, 𝛼3, 𝛼4)   

    𝐿 は、𝑄 のガロア拡大だし、𝑔(𝑥) は、𝑄 上の分離多項式で、その最小 

  分解体 𝑀 = 𝑄(𝜃1, 𝜃2, 𝜃3) は 𝑄 のガロア拡大。 

    𝑓(𝑥) のガロア群𝐺 = 𝐺(𝐿/𝑄) は、𝑆4 の部分群と同型であって、 

  可移群（注 1）であるから、その位数は 4 の倍数であり、 

24 の約数である。すなわち、24 ,12 ,8 ,4 のいずれか。 

  また、𝐺 = 𝐺(𝐿/𝑄) ⊆ 𝑆4 のうちで、𝑀 = 𝑄(𝜃1, 𝜃2, 𝜃3) の元 𝜃1 , 𝜃2 , 𝜃3を 

  不変にするもの 𝜎 ∈ 𝐺(𝐿/𝑀)としては、𝜃1 , 𝜃2 , 𝜃3のとり方からわかるように 

   𝑉 = {( ) , (12)(34) , (13)(24) , (14)(23) }   (Klein の 4 元群) (注 2) 

であってこのときに限る。 

    ∴ 𝐺(𝐿/𝑄)=𝐺 ∩ 𝑉    (𝑆4 の部分群𝐺がいつも 𝑉 を含むとは限らないから) 

  こうしておいて、 

[1] 𝑔(𝑥) が 𝑄 上既約であるとき 

  3次方程式のガロア群のところで述べたように 

      √𝐷′ ∈ 𝑄 ⟹ 𝐺(𝑀/𝑄)≅ 𝐴3 （位数 3）   

  √𝐷′ ∉ 𝑄 ⟹ 𝐺(𝑀/𝑄) ≅ 𝑆3  （位数 6） 

  一方、𝐿 の 𝑄上の拡大次数(𝐿/𝑄) = (𝐿/𝑀)(𝑀/𝑄)であって 

   |𝐺(𝐿/𝑄)|は、|𝐺(𝑀/𝑄)|の倍数 

  ∴ |𝐺(𝐿/𝑄)|は、3の倍数 

  また、𝐺(𝐿/𝑄)は可移群であって|𝐺(𝐿/𝑄)|は、4 の倍数 

  ∴   |𝐺(𝐿/𝑄)|は、3×4=12 の倍数 

    ∴ 𝐺 = 𝐺(𝐿/𝑄)  ≅ 𝐴4 か 𝑆4  (4 次交代群か 4 次対称群) (注 3) 

  このとき、𝑉 ⊂ 𝐴4 か 𝑆4 であって 

 𝐺(𝐿/𝑀)=𝐺 ∩ 𝑉 = 𝑉 

  (𝐿/𝑀)=|𝐺(𝐿/𝑀)|=|𝑉| = 4  

 以上から考えると 

√𝐷′ = √𝐷 ∈ 𝑄 ⟹ 𝐺(𝑀/𝑄)≅ 𝐴3 ⟹ (𝑀/𝑄)=3 

             ⟹ (𝐿/𝑄)=(𝐿/𝑀)(𝑀/𝑄)=4× 3 =12 

             ⟹ 𝐺(𝐿/𝑄)≅ 𝐴4   

√𝐷′ = √𝐷 ∉ 𝑄 ⟹ 𝐺(𝑀/𝑄)≅ 𝑆3 ⟹ (𝑀/𝑄)=6 

             ⟹ (𝐿/𝑄)=(𝐿/𝑀)(𝑀/𝑄)=4× 6 =24 

             ⟹ 𝐺(𝐿/𝑄)≅ 𝑆4   

 

(注 1) 𝐺 を空でない集合 𝑋 の置換群とし、𝑋の任意の元 𝑥  , 𝑦  

  に対して、𝜎(𝑥) = 𝑦 を満たす𝐺 の元 𝜎 が存在するとき 

𝐺を(𝑋上の)可移群という。たとえば、𝑋 = {1 ,2 ,3 ,4 }と 



したとき、𝐺1 = {(
1234
1234

) , (
1234
2143

) , (
1234
3412

)  , (
1234
4321

)}は可移群。 

  𝐺2 = {(
1234
1234

) , (
1234
2143

) }は置換群であるが可移群でない。 

𝑄 上の𝑓(𝑥) = 0のガロア群が可移群であれば、𝑓(𝑥)は𝑄 上 

既約である。（この逆も成り立つ+） 

 

(注 2) この『4次方程式のガロア群』の中では、 

     ( ) = (
1234
1234

)  , (123) = (
1234
2314

)  , (12)(34) = (
1234
2143

) 

       (12 ) = (
1234
2134

)  , (1234) = (
1234
2341

)  などを意味する。 

      𝑉 = 長方形をそれ自身に移す対称変換   

          1           2 

          4           3  

                  = {( ) , (12)(34) , (13)(24) , (14)(23) }    

        ={(
1234
1234

) , (
1234
2143

) , (
1234
3412

)  , (
1234
4321

)}  

        ={   𝑒    ,   𝜎    ,   𝜏     ,   𝜏𝜎  }   

  （注意） 

      恒等置換は、ふつう 𝑖 で表すが４次方程式の中では 

   𝑖 = √−1 と混同しないように、e で表すことにする。 

 

 （注 3）         

   𝐴4 = {  ( ), (123), (124), (132), (134), (142), (143) ,  

         (234), (243), (12)(34), (13)(24), (14)(23)  }    

 𝑆4 = {   𝐴4  , (12), (13), (14), (23), (24), (34),  

          (1234),(1243),(1324),(1342),(1423),(1432)  }    

 

 

[2] 𝑔(𝑥) が 𝑄 上可約であるとき 

① 𝑔(𝑥) が 3 つの 1次因数の積に分解するならば、 

  𝑔(𝑥) = (𝑥 − 𝜃1)(𝑥 − 𝜃2)(𝑥 − 𝜃3)  において 

 𝜃1  , 𝜃2  , 𝜃3  ∈ 𝑄 であるから 

 𝐺 = 𝐺(𝐿/𝑄)=𝐺(𝐿/𝑀)=𝐺 ∩ 𝑉 



  ∴ 𝐺 ⊆ 𝑉 

  一方、𝐺 ⊇ 𝑉  ∴𝐺 = 𝑉   

 

② 𝑔(𝑥) が 1次と 2次の因数の積に分解するならば 

𝑔(𝑥) = (𝑥 − 𝜃1)(𝑥 − 𝜃2)(𝑥 − 𝜃3)  において 

仮に、𝜃1 ∈ 𝑄   ,    𝜃2  , 𝜃3 ∉ 𝑄 とすると、 

𝐺 = 𝐺(𝐿/𝑄)の元は、𝜃1 ∈ 𝑄 を不変にする。 

𝜃1 = (𝛼1 + 𝛼2)(𝛼3 + 𝛼4)  を不変にするものは、 

𝑉 = {( ) , (12)(34) , (13)(24) , (14)(23) } のほか 

(12)  , (34)  , (1324)  , (1423) の置換も合わせて 

考えられ、𝐺 としては、この場合次の𝐷41と𝐶41の 

2 つが考えられる。（注 4） 

             𝐷41 = {𝑉 , (12)  , (34)  , (1324) , (1423)} 

      ={ (
1234
1234

) , (
1234
2143

) , (
1234
3412

)  , (
1234
4321

) 

          (
1234
2134

) , (
1234
1243

) , (
1234
3421

) , (
1234
4312

) } 

   ={      𝑒        ,        𝜐2       ,     𝜍𝜐2       ,    𝜍       

                 𝜍𝜐3   ,       𝜍𝜐     ,       𝜐3      ,       𝜐       }    

      ={ 𝑒  , 𝜐  , 𝜐2  , 𝜐3  , 𝜍 , 𝜍𝜐  , 𝜍𝜐2  , 𝜍𝜐3  } 

              𝐶41 =< 1423 > 

                     = {( )  , (1423)  , (1423)2  , (1423)3 } 

                     = {( )  , (1423) , (12)(34)  , (1324) }  

     = { 𝑒   ,     𝜐       ,         𝜐2      ,      𝜐3      }    

または、𝐶41 として、 

                      𝐶41 =< 1324 >   = {( )  , (1324)  , (1324)2  , (1324)3 } 

                              = {( )  , (1324) , (12)(34)  , (1423) } 

= {  𝑒  ,   𝜉   ,    𝜉2     ,   𝜉3  } 

   このとき、𝐿 は、𝑓(𝑥) の 𝑀 上の（最小）分解体でも 

   あることに注意すれば、 

           𝐺 ≅ 𝐷41(位数 8)⇒ 𝐺(𝐿/𝑀)= 𝐺 ∩ 𝑉 = 𝑉   (可移群) 

                                           ⇒ 𝐺(𝐿/𝑀)は可移群 

                                           ⇒ 𝑓(𝑥)は𝑀 上既約  (逆順も可) 

            𝐺 ≅ 𝐶41(位数 4)⇒ 𝐺(𝐿/𝑀)= 𝐺 ∩ 𝑉 = {( ) , (12)(34) }   (可移群でない) 

                                            ⇒ 𝐺(𝐿/𝑀)は可移群でない 

                                            ⇒ 𝑓(𝑥)は𝑀 上可約  (逆順も可) 



 

 （注 4）実は、𝐷41 = (12)𝑉 ∪ 𝑉であって、(𝜃2 ∈ 𝑄 ,   𝜃1 , 𝜃3 ∉ 𝑄) 

や（𝜃3 ∈ 𝑄  , 𝜃1 , 𝜃2 ∉ 𝑄）を考えると、ほかに 

𝐷42 = (13)𝑉 ∪ 𝑉 や 𝐷43 = (14)𝑉 ∪ 𝑉がある。その場合 

   𝐶41に相当するものは、それぞれ、 

                𝐶42 =< 1234 >=< 1432 > ,  𝐶43 =< 1342 >=< 1243 > 

である。  

以下、ここでは、 

              𝐷41 ≅  𝐷42 ≅  𝐷43 なので、 

 𝐷41   , 𝐷42   , 𝐷43を総合して、 𝐷4で表す。 

（𝐷4は位数 8 で、正 4 角形をそれ自身に移す回転変換や鏡映変換） 

 

     1        2 

 

     4        3 

            

              𝐶41 ≅  𝐶42 ≅  𝐶43 なので、 

              𝐶41   , 𝐶42   , 𝐶43を総合して、𝐶4 (位数 4 の巡回群)で表す。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  (まとめ)   

    𝑄 上既約な𝑓(𝑥) = 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0  において、 

          𝑔(𝑥) = 𝑥3 − 2𝑝𝑥2 + (𝑝2 − 4𝑟)𝑥 + 𝑞2  とし 

𝐿 を 𝑓(𝑥) の最小分解体とするとき、 

        𝐷 = 16𝑝4𝑟 − 4𝑝3𝑞2 − 128𝑝2𝑟2 + 144𝑝𝑞2𝑟 − 27𝑞4 + 256𝑟3 であって 

[1] 𝑔(𝑥) が 𝑄 上既約であるとき 

           √𝐷 ∈ 𝑄 ⟹ 𝐺(𝐿/𝑄)≅ 𝐴4   

    √𝐷 ∉ 𝑄 ⟹ 𝐺(𝐿/𝑄)≅ 𝑆4   

[2] 𝑔(𝑥) が 𝑄 上可約であるとき 

① 𝑔(𝑥) が 3 つの 1次因数の積に分解する場合 

              𝐺(𝐿/𝑄) ≅ 𝑉 

②  𝑔(𝑥) が 1次と 2次の因数の積に分解する場合 

    𝑔(𝑥) の最小分解体を𝑀として、 

𝑓(𝑥)が𝑀 上既約  ⇒  𝐺(𝐿/𝑄)≅ 𝐷4   

               𝑓(𝑥)が𝑀 上可約  ⇒  𝐺(𝐿/𝑄)≅ 𝐶4   

 

 <4 次方程式(𝑄 上既約)のガロア群の包含関係>           

                  𝑆4 

                           

                          𝐴4    

                  𝐷4         

                            

                   𝐶4        𝑉   

 

 

 

 

 

 

 

 

 

 

 

 



例 1 𝑥4 + 2𝑥2 + 12𝑥 + 10 = 0  (𝑄 上既約)のガロア群𝐺 

<求め方 1＞ 

𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 の分解多項式は、 

𝑔(𝑥) = 𝑥3 − 2𝑝𝑥2 + (𝑝2 − 4𝑟)𝑥 + 𝑞2 であったから 

 𝑔(𝑥) = 𝑥3 − 2 ∙ 2 ∙ 𝑥2 + (22 − 4 ∙ 10)𝑥 + 122  

       = 𝑥3 − 4𝑥2 − 36𝑥 + 144 = (𝑥 − 4)(𝑥 − 6)(𝑥 + 6)   

             𝑔(𝑥) が 𝑄 上で 3 つの 1次因数に分解されるから 

             ガロア群𝐺 ≅ 𝑉   

 

<求め方 2 > フェラ－リの解法（注 5）で解を求めると、 

             𝑥4 = −2𝑥2 − 12𝑥 − 10 

      ∴    𝑥4 + 2𝜆𝑥2 + 𝜆2 = −2𝑥2 − 12𝑥 − 10 + 2𝜆𝑥2 + 𝜆2 

      ∴   (𝑥2 + 𝜆)2 = (2𝜆 − 2)𝑥2 − 12𝑥 + 𝜆2 − 10   

 右辺が完全平方式になるには、判別式＝０が必要で 

 (−6)2 − (2𝜆 − 2)(𝜆2 − 10) = 0 

        ∴    𝜆3 − 𝜆2 − 10𝜆 − 8 = 0    

        ∴   (𝜆 + 1)(𝜆 + 2)(𝜆 − 4) = 0 

        ∴   𝜆 = −1 , 𝜆 = −2 , 𝜆 = 4 

        λ の値はどれでもよいが、λ = 4 とすると、 

               (𝑥2 + 4)2 = 6(𝑥 − 1)2     

          ∴    𝑥2 + 4 = ±√6 (𝑥 − 1)   

            ∴    𝑥2 − √6 𝑥 + 4 + √6 = 0  ,  𝑥2 + √6 𝑥 + 4 − √6 = 0  

           ∴   𝑥 =
√6±√−10−4√6

2
  , 𝑥 =

−√6±√−10+4√6

2
      

     これより 

             𝑥1 =
√6 + √−10 − 4√6

2
  , 𝑥2 =

√6 − √−10 − 4√6

2
 

             𝑥3 =
−√6 + √−10 + 4√6

2
 , 𝑥4 =

−√6 − √−10 + 4√6

2
 

（注意）√−10 + 4√6 =
−2

√−10−4√6
   

とおくと、 



  𝑄(𝑥1, 𝑥2,𝑥3,𝑥4) = 𝑄(√6 , √−10 − 4√6 ) からそれ自身への自己同型写像 は 

     𝜎0 = 𝑒 ∶  √6 → √6   , √−10 − 4√6  →  √−10 − 4√6  

                     （このとき、√−10 + 4√6  → √−10 + 4√6 ） 

           𝜎1 = 𝜎 ∶  √6 → √6   , √−10 − 4√6  →  −√−10 − 4√6   

（このとき、√−10 + 4√6  → −√−10 + 4√6 ） 

           𝜎2 = 𝜏  ∶ √6 → −√6   , √−10 − 4√6  →  √−10 + 4√6 

（このとき、√−10 + 4√6  → √−10 − 4√6 ） 

           𝜎3 = 𝜏𝜎 ∶ √6 → −√6   , √−10 − 4√6  → −√−10 + 4√6 

（このとき、√−10 + 4√6  → −√−10 − 4√6 ） 

     である。 

    𝑥1 = 1  , 𝑥2 = 2  , 𝑥3 = 3  , 𝑥4 = 4 で書くと 

   𝑒 = (
1234
1234

)  ,𝜎 = (
1234
2143

)   , 𝜏 = (
1234
3412

)   , 𝜏𝜎 = (
1234
4321

)    

       これより 

    𝐺 ≅ { 𝑒  , 𝜎  , 𝜏  , 𝜏𝜎   }    ≅ 𝑉    

 

  （注 5）フェラ－リ(𝐹𝑒𝑟𝑟𝑎𝑟𝑖  1522 − 1565)の解法 

           𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 

           𝑥4 = −𝑝𝑥2 − 𝑞𝑥 − 𝑟 

       ∴   𝑥4 + 2𝜆𝑥2 + 𝜆2 = −𝑝𝑥2 − 𝑞𝑥 − 𝑟 + 2𝜆𝑥2 + 𝜆2 

       ∴   (𝑥2 + 𝜆)2 = (2𝜆 − 𝑝)𝑥2 − 𝑞𝑥 + 𝜆2 − 𝑟   

 右辺が完全平方式になるには、判別式＝０が必要で 

 (−𝑞)2 − 4(2𝜆 − 𝑝)(𝜆2 − 𝑟) = 0 

        ∴  −8𝜆3 + 4𝑝𝜆2 + 8𝑟𝜆 + 𝑞2 − 4𝑝𝑟 = 0    

       これは、３次方程式なのでカルダノの公式などで求まる。 

そこで求めた λ の値の 1 つを 𝜆1とすれば、与式は 

                 (𝑥2 + 𝜆1)2 = (2𝜆1 − 𝑝) (𝑥 −
𝑞

4𝜆1 − 2𝑝
)

2

  

これより、2 つの２次方程式 

𝑥2 + 𝜆1 = ±√2𝜆1 − 𝑝 (𝑥 −
𝑞

4𝜆1−2𝑝
) が得られ、与式の 

4 つの解が求まる。 



 

＜求め方 3＞ ガロア流 

（３次方程式のガロア群 例 1 と同様だが計算量は多くなってくる）  

      𝑥4 + 2𝑥2 + 12𝑥 + 10 = 0  の解を𝛼 , 𝛽 , 𝛾 , 𝛿 とすると 

    𝛼 + 𝛽 + 𝛾 + 𝛿 = 0 ,   

      𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 2 ,    

      𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿 = −12 

      𝛼𝛽𝛾𝛿 = 10   

      ここで、 

      𝑉1 = 𝛼 + 2𝛽 + 3𝛾 + 5𝛿       

      𝑉2 = 𝛼 + 2𝛽 + 3𝛿 + 5𝛾  

      𝑉3 = 𝛼 + 2𝛾 + 3𝛽 + 5𝛿       

      𝑉4 = 𝛼 + 2𝛾 + 3𝛿 + 5𝛽  

      ………………………… 

      ………………………… 

   𝑉23 = 𝛿 + 2𝛾 + 3𝛼 + 5𝛽  

      𝑉24 = 𝛿 + 2𝛾 + 3𝛽 + 5𝛼    とし、 

 𝐹(𝑉) = (𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉 − 𝑉3) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (𝑉 − 𝑉24)とおくと 

       = 𝑉24 + 140𝑉22 + 1080𝑉21 + 9016𝑉20 + 126000𝑉19 + 1147880𝑉18 +  

              8310960𝑉17 + ∙∙∙∙∙∙∙∙∙∙  +6589297795500000000𝑉 + 5266300910625000000   

        = (𝑉4 + 74𝑉2 + 180𝑉 + 250) × (𝑉4 + 90𝑉2 + 180𝑉 + 954) × 

           (𝑉4 + 26𝑉2 + 180𝑉 + 1450)  × (𝑉4 + 50𝑉2 + 180𝑉 + 2554) × 

            (𝑉4 − 54𝑉2 + 180𝑉 + 2250) × (𝑉4 − 46𝑉2 + 180𝑉 + 2650) 

      （#この計算にはコンピュ－タ－ を利用）   

 

  < 𝛼 を𝑉 で表す> 

  𝐹(𝑉, 𝑥) = (𝑉 − ( 𝑥 + 2𝛽 + 3𝛾 + 5𝛿 ))(𝑉 − ( 𝑥 + 2𝛽 + 3𝛿 + 5𝛾 )) 

             × (𝑉 − ( 𝑥 + 2𝛾 + 3𝛽 + 5𝛿 ))(𝑉 − ( 𝑥 + 2𝛾 + 3𝛿 + 5𝛽 )) 

             × (𝑉 − ( 𝑥 + 2𝛿 + 3𝛽 + 5𝛾 ))(𝑉 − ( 𝑥 + 2𝛿 + 3𝛾 + 5𝛽 ))  

    とおくと、 

  𝛽 + 𝛾 + 𝛿 = −𝛼 = −𝑥 ,   

      𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 2 − 𝛼(𝛽 + 𝛾 + 𝛿) = 2 + 𝛼2 = 2 + 𝑥2    

      𝛽𝛾𝛿 = −12 − 𝛼(𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) = −12 − 𝛼(2 + 𝛼2) = −12 − 2𝑥 − 𝑥3   

    これより  

  𝐹(𝑉, 𝑥) = 1105𝑥6 + 1302𝑉𝑥5 + (3428 + 875𝑉2)𝑥4 + (11760 + 2800𝑉 + 356𝑉3)𝑥3 + 



     (2836 + 5040𝑉 + 1232𝑉2 + 91𝑉4)𝑥2 + (18816 + 1288𝑉 + 1680𝑉2 + 288𝑉3 + 14𝑉5)𝑥 + 

     49680 + 3360𝑉 + 196𝑉2 + 240𝑉3 + 28𝑉4 + 𝑉6    

    ここで、𝑉 = 𝑉1 が、仮に𝑉4 + 74𝑉2 + 180𝑉 + 250 = 0 の解だとすると(注 6) 

   𝐹(𝑉, 𝑥) =  1105𝑥6 + 1302𝑉𝑥5 + (3428 + 875𝑉2)𝑥4 + (11760 + 2800𝑉 + 356𝑉3)𝑥3 

          +(−19914 − 11340𝑉 − 5502𝑉2)𝑥2 + (18816 − 2212𝑉 − 840𝑉2 − 748𝑉3)𝑥 

          +61180 + 11640𝑉 + 3350𝑉2 + 60𝑉3                              

となり、これと 

 𝑥4 + 2𝑥2 + 12𝑥 + 10 は唯一の共通解 𝛼 をもつから、互除法の考えで 

  割り算を繰り返すと最後に 1次式 𝐴𝑥 + 𝐵で割るところまで進むが 

    これを 0 とおいて、𝑥(= 𝛼) = −𝐵/𝐴   が求まる。 

      (計算式は、非常に長くなるので省略する) 

   α = (−7190 + 347V − 260𝑉2 + 18𝑉3)/6095  

     同様にして、 

    β = (−2980 − 9047V + 350𝑉2 − 118𝑉3)/6095 

      γ = (18850 + 9829V − 5𝑉2 + 141𝑉3)/6095 

      δ = (−8680 − 1129V − 85𝑉2 − 41𝑉3)/6095 

   （ただし、𝑉4 + 74𝑉2 + 180𝑉 + 250 = 0 ） 

これより、 

     𝑉1 = 𝛼 + 2𝛽 + 3𝛾 + 5𝛿 = 𝑉       

       𝑉2 = 𝛼 + 2𝛽 + 3𝛿 + 5𝛾 = (55060 + 28011𝑉 + 160𝑉2 + 364𝑉3)/6095 

           ……………………… 

       𝑉8 = 𝛽 + 2𝛼 + 3𝛿 + 5𝛾 = (10170 + 7481𝑉 − 90𝑉2 + 100𝑉3)/1219 

           ……………………… 

       𝑉17 = 𝛾 + 2𝛿 + 3𝛼 + 5𝛽 = (−660 − 691𝑉 + 15𝑉2 − 9𝑉3)/115   

           ………………………… 

       𝑉24 = 𝛿 + 2𝛾 + 3𝛽 + 5𝛼=(−690 − 299V − 15𝑉2 − 𝑉3)/265  

  これらの中で、𝑉4 + 74𝑉2 + 180𝑉 + 250 = 0を満たすのは、 

     𝑉1  , 𝑉8  , 𝑉17  , 𝑉24  である。 

   ここで、 

        𝜑1(𝑥) = (−7190 + 347𝑥 − 260𝑥2 + 18𝑥3)/6095  

      𝜑2(𝑥) = (−2980 − 9047𝑥 + 350𝑥2 − 118𝑥3)/6095 

        𝜑3(𝑥) = (18850 + 9829𝑥 − 5𝑥2 + 141𝑥3)/6095 

        𝜑4(𝑥) = (−8680 − 1129𝑥 − 85𝑥2 − 41𝑥3)/6095 

とおくと 

      𝜑1(𝑉1) =  𝛼  , 𝜑2(𝑉1) = 𝛽    , 𝜑3(𝑉1) = 𝛾  , 𝜑4(𝑉1) = 𝛿   



      𝜑1(𝑉8) =  𝛽  , 𝜑2(𝑉8) = 𝛼    , 𝜑3(𝑉8) = 𝛿  , 𝜑4(𝑉8) = 𝛾   

      𝜑1(𝑉17) = 𝛾  , 𝜑2(𝑉17) = 𝛿    , 𝜑3(𝑉17) = 𝛼  , 𝜑4(𝑉17) = 𝛽   

      𝜑1(𝑉24) = 𝛿  , 𝜑2(𝑉24) = 𝛾    , 𝜑3(𝑉24) = 𝛽  , 𝜑4(𝑉24) = 𝛼   

これらより 

 (
 𝜑1(𝑉)  , 𝜑2(𝑉)  , 𝜑3(𝑉)  , 𝜑4(𝑉) 

𝜑1(𝑉1)  , 𝜑2(𝑉1)  , 𝜑3(𝑉1)  , 𝜑4(𝑉1)  
)=(

𝛼𝛽𝛾𝛿
𝛼𝛽𝛾𝛿

) = (
1234
1234

)   

      (
 𝜑1(𝑉) , 𝜑2(𝑉) , 𝜑3(𝑉) , 𝜑4(𝑉) 

𝜑1(𝑉8), 𝜑2(𝑉8), 𝜑3(𝑉8), 𝜑4(𝑉8)    
)=(

𝛼𝛽𝛾𝛿
𝛽𝛼𝛿𝛾

) = (
1234
2143

)    

      (
 𝜑1(𝑉) , 𝜑2(𝑉) , 𝜑3(𝑉) , 𝜑4(𝑉) 

𝜑1(𝑉17), 𝜑2(𝑉17), 𝜑3(𝑉17), 𝜑4(𝑉17)    
)=(

𝛼𝛽𝛾𝛿
𝛾𝛿𝛼𝛽

) = (
1234
3412

)   

       (
 𝜑1(𝑉) , 𝜑2(𝑉) , 𝜑3(𝑉) , 𝜑4(𝑉) 

𝜑1(𝑉24), 𝜑2(𝑉24), 𝜑3(𝑉24), 𝜑4(𝑉24)    
)=(

𝛼𝛽𝛾𝛿
𝛿𝛾𝛽𝛼

) = (
1234
4321

)     

   これより、 

       𝐺 ≅ { (
1234

1234
)  (

1234

2143
)  (

1234

3412
)  (

1234

4321
)}  ≅ 𝑉   

(注意) 実はこのことは、𝑉1  , 𝑉8  , 𝑉17  , 𝑉24 の解の置換を 

  考えればすぐにわかる。 

  たとえば、𝑉1 と𝑉17 とでは、α とγ を入れ換え 

β とδ を入れ換えたものになっている。 

 

 （注 6）（3 次方程式のガロア群のところでやったように）  

     𝑉(= 𝑉1)が𝑉4 + 74𝑉2 + 180𝑉 + 250 = 0 , 𝑉4 + 90𝑉2 + 180𝑉 + 954 = 0   

               𝑉4 + 26𝑉2 + 180𝑉 + 1450 = 0  , 𝑉4 + 50𝑉2 + 180𝑉 + 2554 = 0    

               𝑉4 − 54𝑉2 + 180𝑉 + 2250 = 0 , 𝑉4 − 46𝑉2 + 180𝑉 + 2650 = 0  

のどの式の解かは不明であるがどれにしても一般性を失わない。 

その式の解に𝑉(= 𝑉1) が入っていなくても、𝐹(𝑉) の作り方から解は 

 𝑉1 ～ 𝑉24 のどれかであり、𝛼 , 𝛽 , 𝛾 , 𝛿 の命名を適当にやり直せば  

𝑉1 = 𝛼 + 2𝛽 + 3𝛾 + 5𝛿 がその式の解になるようにできるから。 

 

例 2 𝑥4 + 2𝑥2 + 8𝑥 + 11 = 0  (𝑄 上既約)のガロア群𝐺  

<求め方 1＞ 

分解多項式は、 

 𝑔(𝑥) = 𝑥3 − 2 ∙ 2 ∙ 𝑥2 + (22 − 4 ∙ 11)𝑥 + 82  

       = 𝑥3 − 4𝑥2 − 40𝑥 + 64 = (𝑥 − 8)(𝑥2 + 4𝑥 − 8)   

              𝑔(𝑥) が 𝑄 上で 1 次と２次の因数の積に分解される。 



一方、𝑔(𝑥) の最小分解体は、𝑀 = 𝑄(√3) であって 

    𝑥4 + 2𝑥2 + 8𝑥 + 11 は、𝑀 = 𝑄(√3) 上既約である。 

∴  ガロア群𝐺 ≅ 𝐷4  

 

<求め方 2 > フェラ－リの解法で解を求めると、 

                 𝑥4 = −2𝑥2 − 8𝑥 − 11 

          ∴    𝑥4 + 2𝜆𝑥2 + 𝜆2 = −2𝑥2 − 8𝑥 − 11 + 2𝜆𝑥2 + 𝜆2 

          ∴   (𝑥2 + 𝜆)2 = (2𝜆 − 2)𝑥2 − 8𝑥 + 𝜆2 − 11   

 右辺が完全平方式になるには、判別式＝０が必要で 

 (−4)2 − (2𝜆 − 2)(𝜆2 − 11) = 0 

          ∴    𝜆3 − 𝜆2 − 11𝜆 + 3 = 0    

          ∴   (𝜆 + 3)(𝜆2 − 4𝜆 + 1) = 0 

          ∴   𝜆 = −3 , 𝜆 = 2 ± √3  

      λ の値はどれでもよいが、λ = 2 + √3 とすると、 

               (𝑥2 + 2 + √3)2 = (2 + 2√3)(𝑥 −
4

2 + 2√3
)2     

               𝑥2 + 2 + √3 = ±√2 + 2√3 (𝑥 −
4

2 + 2√3
) 

 

           𝑥2 − √2 + 2√3 ∙ 𝑥 + 2 + √3 +
4

√2 + 2√3
= 0 

           𝑥2 + √2 + 2√3 ∙ 𝑥 + 2 + √3 −
4

√2 + 2√3
= 0 

これらより 

              𝑥1 =

√2 + 2√3 + √−6 − 2√3 −
16

√2 + 2√3

2
 

  (  =
√2+2√3+√−6−2√3−8√−1+√3

2
  ) 

               𝑥2 =

√2 + 2√3 − √−6 − 2√3 −
16

√2 + 2√3

2
 

                𝑥3 =

−√2 + 2√3 + √−6 − 2√3 +
16

√2 + 2√3

2
 



                𝑥4 =

−√2 + 2√3 − √−6 − 2√3 +
16

√2 + 2√3

2
 

とおくと、  

（注意）  √−6 − 2√3 +
16

√2+2√3
 = 

−2√28−10√3

√−6−2√3−
16

√2+2√3

   

 𝑄(𝑥1, 𝑥2,𝑥3,𝑥4) = 𝑄 (√2 + 2√3 , √−6 − 2√3 − 16

√2+2√3
  , √−6 − 2√3 + 16

√2+2√3
 ) 

     = 𝑄 (√2 + 2√3 , √28 − 10√3  , √−6 − 2√3 − 16

√2+2√3
 ) 

     (  = 𝑄 (√2 + 2√3 , √28 − 10√3  , √−6 − 2√3 − 8√−1 + √3 )    ) 

からそれ自身への自己同型写像  は 

 

   𝜎0 = 𝑒 ∶  √2 + 2√3 → √2 + 2√3  , √28 − 10√3   →  √28 − 10√3   

                       , √−6 − 2√3 − 8√−1 + √3 →  √−6 − 2√3 − 8√−1 + √3 

            

        𝜎1 = 𝜎 ∶  √2 + 2√3 → √2 + 2√3  , √28 − 10√3   → − √28 − 10√3   

                       , √−6 − 2√3 − 8√−1 + √3 →  √−6 − 2√3 − 8√−1 + √3 

         𝜎2 = 𝜏 ∶  √2 + 2√3 → √2 + 2√3  , √28 − 10√3   →  √28 − 10√3   

                       , √−6 − 2√3 − 8√−1 + √3 →  −√−6 − 2√3 − 8√−1 + √3 

        𝜎3 = 𝜏𝜎 ∶  √2 + 2√3 → √2 + 2√3  , √28 − 10√3   → − √28 − 10√3   

                         , √−6 − 2√3 − 8√−1 + √3 →  −√−6 − 2√3 − 8√−1 + √3 

         𝜎4 = 𝜉 ∶  √2 + 2√3 → −√2 + 2√3  , √28 − 10√3   →  √28 − 10√3   

                        , √−6 − 2√3 − 8√−1 + √3 →  √−6 − 2√3 − 8√−1 + √3 



      𝜎5 = 𝜎𝜉 ∶  √2 + 2√3 → −√2 + 2√3  , √28 − 10√3   →  −√28 − 10√3   

                       , √−6 − 2√3 − 8√−1 + √3 →  √−6 − 2√3 − 8√−1 + √3 

       𝜎6 = 𝜏𝜉 ∶  √2 + 2√3 → −√2 + 2√3  , √28 − 10√3   →  √28 − 10√3   

                      , √−6 − 2√3 − 8√−1 + √3 → − √−6 − 2√3 − 8√−1 + √3 

      𝜎7 = 𝜏𝜎𝜉 ∶  √2 + 2√3 → −√2 + 2√3  , √28 − 10√3   → − √28 − 10√3   

                        , √−6 − 2√3 − 8√−1 + √3 → − √−6 − 2√3 − 8√−1 + √3 

 

   𝑥1 = 1  , 𝑥2 = 2  , 𝑥3 = 3  , 𝑥4 = 4 で書くと 

𝑒 = (
1234
1234

)  ,𝜎 = (
1234
1243

)   , 𝜏 = (
1234
2143

)   , 𝜏𝜎 = (
1234
2134

)    

            ξ = (
1234

3412
)   , 𝜎𝜉 = (

1234

4312
)   , 𝜏𝜉 = (

1234

4321
)   , 𝜏𝜎𝜉 = (

1234

3421
) 

       

     ここで、改めて、, 𝜏𝜎𝜉 = (
1234
3421

) = 𝜐  , 𝜎 = (
1234
1243

) = 𝜂 と書き直すと 

   これらは、 

     e= (
1234
1234

)  ,𝜐 = (
1234
3421

)   , 𝜐2 = (
1234
2143

)   , 𝜐3 = (
1234
4312

) 

      𝜂 = (
1234
1243

)  , 𝜂𝜐 = (
1234
4321

)  , 𝜂𝜐2 = (
1234
2134

)  , 𝜂𝜐3 = (
1234
3412

) 

    これより 

   𝐺 ≅ {𝑒 , 𝜐 , 𝜐2 , 𝜐3 , 𝜂 , 𝜂𝜐 , 𝜂𝜐2 , 𝜂𝜐3 }  ≅ 𝐷4   

 

  <求め方 3> ガロア流 

例 1 と全く同様だが、計算式の値が大きくて  

コンピュ－タ－を利用しても大変である。 

以後は、この求め方は中止。 

 

                 𝑥4 + 2𝑥2 + 8𝑥 + 11 = 0 の解を𝛼 , 𝛽 , 𝛾 , 𝛿 とすると 



        𝛼 + 𝛽 + 𝛾 + 𝛿 = 0 ,   

                    𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 2 ,    

                    𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿 = −8 

                    𝛼𝛽𝛾𝛿 = 11   

        ここで、 

         𝑉1 = 𝛼 + 2𝛽 + 3𝛾 + 5𝛿       

                    𝑉2 = 𝛼 + 2𝛽 + 3𝛿 + 5𝛾  

           ……………………… 

                   𝑉6 = 𝛼 + 2𝛿 + 3𝛾 + 5𝛽  

           ……………………… 

                   𝑉8 = 𝛽 + 2𝛼 + 3𝛿 + 5𝛾 

……………………… 

                   𝑉10 = 𝛽 + 2𝛾 + 3𝛿 + 5𝛼 

…………………… 

                  𝑉15 = 𝛾 + 2𝛽 + 3𝛼 + 5𝛿 

………………………   

                   𝑉17 = 𝛾 + 2𝛿 + 3𝛼 + 5𝛽 

……………………… 

                   𝑉19 = 𝛿 + 2𝛼 + 3𝛽 + 5𝛾 

      ………………………… 

                   𝑉24 = 𝛿 + 2𝛾 + 3𝛽 + 5𝛼    とし、 

 𝐹(𝑉) = (𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉 − 𝑉3) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (𝑉 − 𝑉24)とおくと 

 𝐹(𝑉) = 𝑉24 + 140𝑉22 + 720𝑉21 + 9086𝑉20 + 84000𝑉19 + ∙∙∙∙∙∙∙∙    

        ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

        +3403502053814404080𝑉 + 2757331011778954281 

      =(𝑉8 + 20𝑉6 + 240𝑉5 + 1258𝑉4 + 2400𝑉3 + 150396𝑉2 + 346320𝑉 + 421641)  

   × (𝑉8 − 60𝑉6 + 240𝑉5 + 2138𝑉4 − 7200𝑉3 − 16596𝑉2 + 240720𝑉 + 728761) 

 × (𝑉8 + 180𝑉6 + 240𝑉5 + 14090𝑉4 + 21600𝑉3 + 591900𝑉2 + 741840𝑉 + 8973481) 

      （#この計算にはコンピュ－タ－ を利用）   

 

  < 𝛼 を𝑉 で表す> 

  𝐹(𝑉, 𝑥) = (𝑉 − ( 𝑥 + 2𝛽 + 3𝛾 + 5𝛿 ))(𝑉 − ( 𝑥 + 2𝛽 + 3𝛿 + 5𝛾 )) 

           × (𝑉 − ( 𝑥 + 2𝛾 + 3𝛽 + 5𝛿 ))(𝑉 − ( 𝑥 + 2𝛾 + 3𝛿 + 5𝛽 )) 

           × (𝑉 − ( 𝑥 + 2𝛿 + 3𝛽 + 5𝛾 ))(𝑉 − ( 𝑥 + 2𝛿 + 3𝛾 + 5𝛽 ))  

    とおくと、 

  𝛽 + 𝛾 + 𝛿 = −𝛼 = −𝑥 ,   



      𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 2 − 𝛼(𝛽 + 𝛾 + 𝛿) = 2 + 𝛼2 = 2 + 𝑥2    

      𝛽𝛾𝛿 = −8 − 𝛼(𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) = −8 − 𝑥(2 + 𝑥2) = −𝑥3 − 2𝑥 − 8   

 これより  

    𝐹(𝑉, 𝑥) = 1105𝑥6 + 414𝑉𝑥5 + (4052 + 35𝑉2)𝑥4 + (24400 + 1880𝑉 + 28𝑉3)𝑥3 

               + (4324 + 5040𝑉 + 392𝑉2 + 19𝑉4)𝑥2 

               +(42016 + 1976𝑉 − 560𝑉2 + 24𝑉3 − 2𝑉5)𝑥 

               +141760 + 14560𝑉 + 676𝑉2 + 560𝑉3 + 52𝑉4 + 𝑉6             

     （#この計算にはコンピュ－タ－ を利用） 

 

    ここで、𝑉 = 𝑉1 が仮に 

 𝑉8 + 20𝑉6 + 240𝑉5 + 1258𝑉4 + 2400𝑉3 + 150396𝑉2 + 346320𝑉 + 421641 = 0 の 

解だとすると、 𝐹(𝑉, 𝑥)と 𝑥4 + 2𝑥2 + 8𝑥 + 11 は唯一の共通解 𝛼 を 

もつから、互除法の考えで、割り算を繰り返すと最後に 1次式 𝐴𝑥 + 𝐵で 

割るところまで進むが これを 0 とおいて、𝑥(= 𝛼) = −𝐵/𝐴  

が求まる。(コンピュ－タ－を利用しないと無理） 

   すなわち、  

 𝛼 = −
2111884733989

1090512378241
−

129160855758579𝑉

191930178570416
−

1081249050951𝑉2

95965089285208
−

3934830999173𝑉3

575790535711248
 

−
29122965935𝑉4

47982544642604
−

25276831669𝑉5

575790535711248
−

983717601𝑉6

95965089285208
−

1766788733𝑉7

575790535711248
 

   同様にして 

      𝛽 =  
3367087226831

1090512378241
+

482174117256971𝑉

287895267855624
+

1177445721057𝑉2

47982544642604
+

13914914049077𝑉3

863685803566872
+

                     
164087081705𝑉4

71973816963906
+

225672953221𝑉5

863685803566872
−

376674179𝑉6

143947633927812
+

9564473837𝑉7

863685803566872
    

      𝛾 = −
1653722744537

2181024756482
−

319817495025021𝑉

191930178570416
−

1369839061269𝑉2

95965089285208
−

6045252050731𝑉3

575790535711248
−

                 
105841149835𝑉4

47982544642604
−

175119289883𝑉5

575790535711248
+

2344109381𝑉6

95965089285208
−

6030896371𝑉7

575790535711248
  

      𝛿 = −
856682241147

2181024756482
+

191293408918429𝑉

287895267855624
+

48098335053𝑉2

47982544642604
+

1055210525779𝑉3

863685803566872
 

+
19179545975𝑉4

35986908481953
+

74921229107𝑉5

863685803566872
−

1663913491𝑉6

143947633927812
+

2132053819𝑉7

863685803566872
 

(注意、𝑉8 + 20𝑉6 + 240𝑉5 + 1258𝑉4 + 2400𝑉3 + 150396𝑉2 + 346320𝑉 + 421641 = 0 ) 

   これより、 



      𝑉1 = 𝛼 + 2𝛽 + 3𝛾 + 5𝛿 = 𝑉       

       ……………………… 

      𝑉6 = 𝛼 + 2𝛿 + 3𝛾 + 5𝛽 =
22772570084427

2181024756482
+

193422898811875𝑉

47982544642604
+ 

847010539503𝑉2

11995636160651
+

6429851761649𝑉3

143947633927812
+ 

125727989755𝑉4

23991272321302
+

75375862057𝑉5

143947633927812
+ 

                                       
321809828𝑉6

11995636160651
+

3716210009𝑉7

143947633927812
  

       ……………………… 

      𝑉8 = 𝛽 + 2𝛼 + 3𝛿 + 5𝛾 = 省略 

……………………… 

      𝑉10 = 𝛽 + 2𝛾 + 3𝛿 + 5𝛼 = 省略 

……………………… 

     𝑉15 = 𝛾 + 2𝛽 + 3𝛼 + 5𝛿= 省略 

……………………… 

      𝑉17 = 𝛾 + 2𝛿 + 3𝛼 + 5𝛽 = 省略 

……………………… 

      𝑉19 = 𝛿 + 2𝛼 + 3𝛽 + 5𝛾 = 省略 

      ………………………… 

      𝑉24 = 𝛿 + 2𝛾 + 3𝛽 + 5𝛼 =  −
5504281375

2362973734
−

629129236349𝑉

623825065776
− 

−
1067229015𝑉2

103970844296
−

10502786507𝑉3

1871475197328
− 

−
11539235𝑉4

155956266444
+

80186309𝑉5

1871475197328
− 

6802795𝑉6

311912532888
−

1122707𝑉7

1871475197328
 

 これら 𝑉1 ～  𝑉24 の中で、 

    𝑉8 + 20𝑉6 + 240𝑉5 + 1258𝑉4 + 2400𝑉3 + 150396𝑉2 + 346320𝑉 + 421641 = 0 を 

満たすのは、 𝑉1  , 𝑉6  , 𝑉8  , 𝑉10  , 𝑉15 , 𝑉17  , 𝑉19  , 𝑉24  である。 

  これより、（ 例 1 と同様に進めて ）  

    ･･････････････ 

   (途中省略するが、これらの解の置換をみれば) 



･･････････････  

ガロア群𝐺 としては、 

    (
𝛼𝛽𝛾𝛿
𝛼𝛽𝛾𝛿

) = (
1234
1234

)  ,  (
𝛼𝛽𝛾𝛿
𝛼𝛿𝛾𝛽

) = (
1234
1432

)  , (
𝛼𝛽𝛾𝛿
𝛽𝛼𝛿𝛾

) = (
1234
2143

)  , (
𝛼𝛽𝛾𝛿
𝛽𝛾𝛿𝛼

) = (
1234
2341

)  

             (
𝛼𝛽𝛾𝛿
𝛾𝛽𝛼𝛿

) = (
1234
3214

)  ,  (
𝛼𝛽𝛾𝛿
𝛾𝛿𝛼𝛽

) = (
1234
3412

)  , (
𝛼𝛽𝛾𝛿
𝛿𝛼𝛽𝛾

) = (
1234
4123

)  , (
𝛼𝛽𝛾𝛿
𝛿𝛾𝛽𝛼

) = (
1234
4321

)   

ここで、 

(
1234
2341

) = 𝜈   , (
1234
3214

) = 𝜉  とおくと、 

           𝜈2 = (
1234
3412

)     , 𝜈3 = (
1234
4123

)       

          𝜉𝜈 = (
1234
2143

)    , 𝜉𝜈2 = (
1234
1432

)   , 𝜉𝜈3 = (
1234
4321

) 

これらは、 

｛𝑒  , 𝜈  , 𝜈2 , 𝜈3 , 𝜉  , 𝜉𝜈 , 𝜉𝜈2 , 𝜉𝜈3  } 

これより、 ガロア群𝐺 ≅ 𝐷4  

 

 例 3 𝑥4 + 2𝑥2 + 8𝑥 + 9 = 0  (𝑄 上既約)のガロア群𝐺   

   <求め方 1> 

     分解多項式は、 

  𝑔(𝑥) = 𝑥3 − 2 ∙ 2 ∙ 𝑥2 + (22 − 4 ∙ 9)𝑥 + 82  

        = 𝑥3 − 4𝑥2 − 32𝑥 + 64   (𝑄 上既約) 

     𝑥 = 𝑦 +
4

3
 で変換すると  

   ℎ(𝑦) = 𝑦3 −
112

3
𝑦 +

448

27
   (𝑄 上既約)  

     𝑔(𝑥) = 0  の解を 𝛼, 𝛽, 𝛾 とすれば、ℎ(𝑦) = 0  の解は 

 𝛼 −
4

3
, 𝛽 −

4

3
, 𝛾 −

4

3
   である。 

                𝑔(𝑥) = 0  の判別式を𝐷′  , ℎ(𝑦) = 0 の判別式を𝐷′′  とすれば、  

   𝐷′′ = ((𝛼 −
4

3
) − (𝛽 −

4

3
))2((𝛼 −

4

3
) − (𝛾 −

4

3
))2((𝛽 −

4

3
) − (𝛾 −

4

3
))2 

      = (𝛼 − 𝛽)2(𝛼 − 𝛾)2(𝛽 − 𝛾)2  

          = 𝐷′  

                  = −4 ∙ (−
112

3
)

3
− 27 ∙ (

448

27
)

2
= 212 ∙ 72   

      ∴    √𝐷′ = 26 ∙ 7 = 448 ∈ 𝑄  

∴    𝐺 ≅ 𝐴4   



 

＜求め方 2＞ フェラ－リの解法で解を求めると、 

                    𝑥4 = −2𝑥2 − 8𝑥 − 9 

            ∴    𝑥4 + 2𝜆𝑥2 + 𝜆2 = −2𝑥2 − 8𝑥 − 9 + 2𝜆𝑥2 + 𝜆2 

            ∴   (𝑥2 + 𝜆)2 = (2𝜆 − 2)𝑥2 − 8𝑥 + 𝜆2 − 9   

 右辺が完全平方式になるには、判別式＝０が必要で 

 (−4)2 − (2𝜆 − 2)(𝜆2 − 9) = 0 

               ∴    𝜆3 − 𝜆2 − 9𝜆 + 1 = 0 

𝜆 = 𝑚 +
1

3
  とおくと、 

𝑚3 −
28

3
𝑚 −

56

27
= 0    

(これはガロア群 𝐴3 をもつ) 

カルダノの公式より、解の 1 つは、 

         𝑚 = √28

27
+ √(−

28

27
)

2

+ (−
28

9
)

33

+ √28

27
− √(−

28

27
)

2

+ (−
28

9
)

33

   

              = √
28

27
+

28

9
√−3

3

+ √
28

27
−

28

9
√−3

3

     

              𝜔 = (−1 + √−3)/2   とおくと 𝜔2 = (−1 − √−3)/2  で 

              𝑚 =
1

3
(√112 + 168𝜔

3
+ √112 + 168𝜔23

)   

    ∴   𝜆 =
1

3
( 1 + √112 + 168𝜔

3
+ √112 + 168𝜔23

  )     

( 注意：√112 + 168𝜔23
  =   

28

√112+168𝜔
3    ) 

このとき、 

               (𝑥2 + 𝜆)2 = (2𝜆 − 2)(𝑥 −
4

2𝜆 − 2
)2    

      ∴    𝑥2 + 𝜆 = ±√2𝜆 − 2 (𝑥 −
4

2𝜆 − 2
)   

     ∴   𝑥2 + 𝜆 = √2𝜆 − 2 𝑥 −
4

√2𝜆−2
   , 𝑥2 + 𝜆 = −√2𝜆 − 2 𝑥 +

4

√2𝜆−2
     

      ∴  𝑥2 − √2𝜆 − 2  𝑥 + 𝜆 +
4

√2𝜆 − 2
= 0  ,   𝑥2 + √2𝜆 − 2  𝑥 + 𝜆 −

4

√2𝜆 − 2
= 0   

これらより、 



       ∴    𝑥1 =  
   (𝜆 − 1) + √−𝜆2 + 1 − 4√2𝜆 − 2

√2𝜆 − 2
    

               𝑥2 =
   (𝜆 − 1) − √−𝜆2 + 1 − 4√2𝜆 − 2

√2𝜆 − 2
 

               𝑥3 =     
−(𝜆 − 1) + √−𝜆2 + 1 + 4√2𝜆 − 2

√2𝜆 − 2
    

                𝑥4 =  
−(𝜆 − 1) − √−𝜆2 + 1 + 4√2𝜆 − 2

√2𝜆 − 2
 

 

 （注意：𝜆3 − 𝜆2 − 9𝜆 + 1 = 0  より 

√−𝜆2 + 1 + 4√2𝜆 − 2 = 
√𝜆4−2𝜆2−32𝜆+33

√−𝜆2+1−4√2𝜆−2
  =

√8(𝜆2−3𝜆+4)

√−𝜆2+1−4√2𝜆−2
    ) 

 

これより、𝜆 =
1

3
( 1 + √112 + 168𝜔

3
+ √112 + 168𝜔23

  )  として 

            𝑄(𝑥1, 𝑥2,𝑥3,𝑥4) = 𝑄(  𝜔  , √112 + 168𝜔
3

  , √2𝜆 − 2, √−𝜆2 + 1 − 4√2𝜆 − 2  , √−𝜆2 + 1 + 4√2𝜆 − 2)  

                                              = 𝑄( 𝜔  , √112 + 168𝜔
3

  , √2𝜆 − 2, √8 (𝜆2 − 3𝜆 + 4)   , √−𝜆2 + 1 − 4√2𝜆 − 2  ) 

からそれ自身への自己同型写像 𝜎 は、以下の A 群 {𝑎1 , 𝑎2 , 𝑎3 }と B 群 {𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 } の 

組み合わせより、3× 4 =12通り考えられ、ガロア群𝐺 ≅ 𝐴4 (？) 

  A 群 

 𝑎1   ∶  √112 + 168𝜔
3

  → √112 + 168𝜔
3

           

(このとき、√112 + 168𝜔23
  →   √112 + 168𝜔23

    ) 

 𝑎2   ∶  √112 + 168𝜔
3

  → √112 + 168𝜔
3

∙ 𝜔     

(このとき、√112 + 168𝜔23
  →   √112 + 168𝜔23

  ∙ 𝜔2  ) 

  𝑎3   ∶  √112 + 168𝜔
3

  → √112 + 168𝜔
3

∙ 𝜔2   

(このとき、√112 + 168𝜔23
  →   √112 + 168𝜔23

  ∙ 𝜔  ) 

 

  B 群  (   𝜆 =
1

3
( 1 + √112 + 168𝜔

3
+ √112 + 168𝜔23

  ) として ) 

              𝑏1 :    √8 (𝜆2 − 3𝜆 + 4)   →  √8 (𝜆2 − 3𝜆 + 4)  

, √−𝜆2 + 1 − 4√2𝜆 − 2   →  √−𝜆2 + 1 − 4√2𝜆 − 2       

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

             𝑏2  :   √8(𝜆2 − 3𝜆 + 4)   →  −√8(𝜆2 − 3𝜆 + 4) 

, √−𝜆2 + 1 − 4√2𝜆 − 2   →   √−𝜆2 + 1 − 4√2𝜆 − 2  

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   → − √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

              𝑏3 :   √8(𝜆2 − 3𝜆 + 4)   →  √8(𝜆2 − 3𝜆 + 4) 



, √−𝜆2 + 1 − 4√2𝜆 − 2   →  − √−𝜆2 + 1 − 4√2𝜆 − 2   

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  −√−𝜆2 + 1 + 4√2𝜆 − 2  ） 

             𝑏4 :     √8 (𝜆2 − 3𝜆 + 4)   → −√8 (𝜆2 − 3𝜆 + 4)  

, √−𝜆2 + 1 − 4√2𝜆 − 2   →  − √−𝜆2 + 1 − 4√2𝜆 − 2  

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

 

例 4 𝑥4 + 2𝑥2 + 8𝑥 + 16 = 0  (𝑄 上既約)のガロア群𝐺  

  <求め方 1> 

 分解多項式は、 

       𝑔(𝑥) = 𝑥3 − 2 ∙ 2 ∙ 𝑥2 + (22 − 4 ∙ 16)𝑥 + 82 

           = 𝑥3 − 4𝑥2 − 60𝑥 + 64  （𝑄 上既約） 

       𝑥 = 𝑦 +
4

3
 で変換すると  

   ℎ(𝑦) = 𝑦3 −
196

3
𝑦 −

560

27
   (𝑄 上既約)  

     𝑔(𝑥) = 0  の解を 𝛼, 𝛽, 𝛾 とすれば、ℎ(𝑦) = 0  の解は 

 𝛼 −
4

3
, 𝛽 −

4

3
, 𝛾 −

4

3
   である。 

                𝑔(𝑥) = 0  の判別式を𝐷′  , ℎ(𝑦) = 0 の判別式を𝐷′′  とすれば、  

   𝐷′′ = ((𝛼 −
4

3
) − (𝛽 −

4

3
))2((𝛼 −

4

3
) − (𝛾 −

4

3
))2((𝛽 −

4

3
) − (𝛾 −

4

3
))2 

      = (𝛼 − 𝛽)2(𝛼 − 𝛾)2(𝛽 − 𝛾)2  

          = 𝐷′  

                  = −4 ∙ (−
196

3
)

3
− 27 ∙ (−

560

27
)

2
=  211 ∙ 72 ∙ 11     

                   ∴     √𝐷′ = 25 ∙ 7 ∙ √22 ∉ 𝑄  

         ∴    𝐺 ≅ 𝑆4   

 

<求め方 2 > フェラ－リの解法で解を求めると、 

                    𝑥4 = −2𝑥2 − 8𝑥 − 16 

            ∴    𝑥4 + 2𝜆𝑥2 + 𝜆2 = −2𝑥2 − 8𝑥 − 16 + 2𝜆𝑥2 + 𝜆2 

            ∴   (𝑥2 + 𝜆)2 = (2𝜆 − 2)𝑥2 − 8𝑥 + 𝜆2 − 16   

 右辺が完全平方式になるには、判別式＝０が必要で 

 (−4)2 − (2𝜆 − 2)(𝜆2 − 16) = 0 

                      𝜆3 − 𝜆2 − 16𝜆 + 8 = 0   

𝜆 = 𝑚 +
1

3
  とおくと、 



𝑚3 −
49

3
𝑚 +

70

27
= 0    

(これはガロア群 𝑆3 をもつ) 

カルダノの公式より、解の 1 つは、 

         𝑚 = √−
35

27
+ √(

35

27
)

2

+ (−
49

9
)

33

+ √−
35

27
− √(

35

27
)

2

+ (−
49

9
)

33

    

              = √−
35

27
+

14

9
√−66

3

+ √−
35

27
−

14

9
√−66

3

    

              =
1

3
(  √−35 + 42√−66

3

+ √−35 − 42√−66
3

   )   

 ∴   𝜆 =
1

3
( 1 + √−35 + 42√−66

3
+ √−35 − 42√−66

3
  ) 

( 注意：√−35 − 42√−66
3

  =   
49

√−35+42√−66
3      ,   √−66 = √22 ∙ √−3 =√22(2𝜔 + 1)   ) 

このとき、 

              (𝑥2 + 𝜆)2 = (2𝜆 − 2)(𝑥 −
4

2𝜆 − 2
)2    

         ∴    𝑥2 + 𝜆 = ±√2𝜆 − 2 (𝑥 −
4

2𝜆 − 2
)   

          ∴   𝑥2 + 𝜆 = √2𝜆 − 2 𝑥 −
4

√2𝜆−2
   , 𝑥2 + 𝜆 = −√2𝜆 − 2 𝑥 +

4

√2𝜆−2
     

           ∴  𝑥2 − √2𝜆 − 2  𝑥 + 𝜆 +
4

√2𝜆 − 2
= 0  ,   𝑥2 + √2𝜆 − 2  𝑥 + 𝜆 −

4

√2𝜆 − 2
= 0   

これらより、 

       ∴     𝑥1 =  
   (𝜆 − 1) + √−𝜆2 + 1 − 4√2𝜆 − 2

√2𝜆 − 2
    

               𝑥2 =  
   (𝜆 − 1) − √−𝜆2 + 1 − 4√2𝜆 − 2

√2𝜆 − 2
 

               𝑥3 =     
−(𝜆 − 1) + √−𝜆2 + 1 + 4√2𝜆 − 2

√2𝜆 − 2
    

               𝑥4 =     
−(𝜆 − 1) − √−𝜆2 + 1 + 4√2𝜆 − 2

√2𝜆 − 2
 

 

（注意:     𝜆3 − 𝜆2 − 16𝜆 + 8 = 0 より 



√−𝜆2 + 1 + 4√2𝜆 − 2 = 
√𝜆4−2𝜆2−32𝜆+33

√−𝜆2+1−4√2𝜆−2
  =

√15𝜆2−24𝜆+25

√−𝜆2+1−4√2𝜆−2
    ) 

 

これより、𝜆 =
1

3
( 1 +  √−35 + 42√−66

3
+ √−35 − 42√−66

3
  ) として 

𝑄(𝑥1, 𝑥2,𝑥3,𝑥4) = 𝑄( √−66 , √−35 + 42√−66
3

  , √2𝜆 − 2, √−𝜆2 + 1 − 4√2𝜆 − 2  , √−𝜆2 + 1 + 4√2𝜆 − 2)  

= 𝑄(√−66 , √−35 + 42√−66
3

  , √2𝜆 − 2, √15𝜆2 − 24𝜆 + 25  , √−𝜆2 + 1 − 4√2𝜆 − 2 )  

からそれ自身への自己同型写像 𝜎 は、以下の 

A 群 {𝑎1 , 𝑎2 , 𝑎3 , 𝑎4, 𝑎5, 𝑎6 }と B 群 {𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 } の組み合わせより、 

6× 4 = 24 通り考えられ、ガロア群𝐺 ≅ 𝑆4 (？) 

 

  A 群 

𝑎1  ∶ √−66  →  √−66 ,    √−35 + 42√−66
3

  →  √−35 + 42√−66
3

   

                 (このとき √−35 − 42√−66
3

  → √−35 − 42√−66
3

 ) 

  𝑎2  ∶ √−66  →  √−66 ,    √−35 + 42√−66
3

  →  √−35 + 42√−66
3

∙ 𝜔    

 (このとき √−35 − 42√−66
3

  → √−35 − 42√−66
3

∙ 𝜔2) 

  𝑎3  ∶ √−66  →  √−66 ,    √−35 + 42√−66
3

  →  √−35 + 42√−66
3

∙ 𝜔2  

 (このとき √−35 − 42√−66
3

  → √−35 − 42√−66
3

∙ 𝜔) 

 𝑎4  : √−66  → −√−66 ,   √−35 + 42√−66
3

  → √−35 − 42√−66
3

  

(このとき √−35 − 42√−66
3

  → √−35 + 42√−66
3

 ) 

  𝑎5 ∶  √−66  → −√−66 ,   √−35 + 42√−66
3

  → √−35 − 42√−66
3

∙ 𝜔  

(このとき √−35 − 42√−66
3

  → √−35 + 42√−66
3

∙ 𝜔2 ) 

       𝑎6 : √−66  → −√−66 ,   √−35 + 42√−66
3

  → √−35 − 42√−66
3

∙ 𝜔2   

(このとき √−35 − 42√−66
3

  → √−35 + 42√−66
3

∙ 𝜔 ) 

 

  B 群  ( 𝜆 =
1

3
( 1 + √−35 + 42√−66

3
+ √−35 − 42√−66

3
    として) 

              𝑏1 :    √15𝜆2 − 24𝜆 + 25   →  √15𝜆2 − 24𝜆 + 25  

, √−𝜆2 + 1 − 4√2𝜆 − 2   →  √−𝜆2 + 1 − 4√2𝜆 − 2       

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

             𝑏2  :   √15𝜆2 − 24𝜆 + 25   →  −√15𝜆2 − 24𝜆 + 25 

, √−𝜆2 + 1 − 4√2𝜆 − 2   →   √−𝜆2 + 1 − 4√2𝜆 − 2  

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   → − √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

              𝑏3 :   √15𝜆2 − 24𝜆 + 25   →  √15𝜆2 − 24𝜆 + 25 

, √−𝜆2 + 1 − 4√2𝜆 − 2   →  − √−𝜆2 + 1 − 4√2𝜆 − 2   

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  −√−𝜆2 + 1 + 4√2𝜆 − 2  ） 



             𝑏4 :     √15𝜆2 − 24𝜆 + 25   → −√15𝜆2 − 24𝜆 + 25  

, √−𝜆2 + 1 − 4√2𝜆 − 2   →  − √−𝜆2 + 1 − 4√2𝜆 − 2  

（このとき, √−𝜆2 + 1 + 4√2𝜆 − 2   →  √−𝜆2 + 1 + 4√2𝜆 − 2  ） 

 

 

例 5 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0  (𝑄 上既約)のガロア群𝐺  

<求め方 1＞ 

     𝑥 = 𝑦 −
1

4
 で変換すると  

   𝑓(𝑦) = 𝑦4 +
5

8
𝑦2 +

5

8
𝑦 +

205

256
   

分解多項式は、 

𝑔(𝑦) =
1

64
(64𝑦3 − 80𝑦2 − 180𝑦 + 25)   

         =
1

64
(4𝑦 + 5)(16𝑦2 − 40𝑦 + 5)    

     ∴   𝑔(𝑥) =
1

64
(4𝑥 + 6)(16𝑥2 − 32𝑥 − 4)   

  =
1

8
(2𝑥 + 3)(4𝑥2 − 8𝑥 − 1)  

𝑔(𝑥)  が𝑄  上で 1 次と 2次の因数に分解される。 

  一方、  𝑔(𝑥) の最小分解体は、𝑀 = 𝑄(√5) であって 

  𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 は、𝑀 = 𝑄(√5) 上可約である。 

実際に 

         𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = (𝑥2 +
1 + √5

2
𝑥 + 1)(𝑥2 +

1 − √5

2
𝑥 + 1) 

よって、ガロア群𝐺 ≅ 𝐶4  

 

＜求め方 2＞ 

𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0  の解は、 

𝑥5 − 1 = 0  の解のうち、𝑥 = 1  を除いたもので、 

𝑥 = cos 𝜃 + 𝑖 sin 𝜃    (0 ≤ 𝜃 < 2𝜋) とおくと 

𝑥5 = cos(5𝜃) + 𝑖 sin(5𝜃) = 1  より 

5𝜃 = 2𝜋  ,4𝜋  ,6𝜋  ,8𝜋  であり( 5𝜃 = 0 を除く) 

                  𝜃 = 2𝜋/5  ,4𝜋/5  ,6𝜋/5  ,8𝜋/5    

     ∴    𝑥1 = cos (2𝜋/5) + 𝑖 sin ( 2𝜋/5)  = 𝜉               

                  𝑥2 = cos (4𝜋/5) + 𝑖 sin ( 4𝜋/5) =  𝜉2 

                  𝑥3 =  cos (6𝜋/5) + 𝑖 sin ( 6𝜋/5)  = 𝜉3           



                  𝑥4 =  cos (8𝜋/5) + 𝑖 sin ( 8𝜋/5)  = 𝜉4 

 𝑄( 𝜉 ) からそれ自身への自己同型写像 𝜎 は, 

      𝜉5 = 1 に注意して、 

                    𝜎0 = 𝑖   ∶   𝜉 →  𝜉           (   𝜉2  →  𝜉2  , 𝜉3  →  𝜉3  ,   𝜉4  →  𝜉4   )  

                    𝜎1 = 𝜎  ∶    𝜉 →  𝜉2           (  𝜉2  →  𝜉4  , 𝜉3  →  𝜉  , 𝜉4  →  𝜉3 ) 

                    𝜎2 = 𝜎2 ∶    𝜉 →  𝜉4           (  𝜉2  →  𝜉3  , 𝜉3  →  𝜉2  , 𝜉4  →  𝜉  ) 

                    𝜎3 = 𝜎3 ∶    𝜉 →  𝜉3           (  𝜉2  →  𝜉  , 𝜉3  → 𝜉4  , 𝜉4  →  𝜉2  )   

       である。  

          𝑥1 = 1  , 𝑥2 = 2  , 𝑥3 = 3  , 𝑥4 = 4 で書くと 

   𝑖 = (
1234
1234

)  ,𝜎 = (
1234
2413

)   , 𝜎2 = (
1234
4321

)   , 𝜎3 = (
1234
3142

)    

       これより 

    𝐺 ≅ {  𝑖  , 𝜎  , 𝜎2   , 𝜎3  }    ≅ 𝐶4    

 

 

ここから 

  𝑄 上可約な場合 

例 6 𝑥4 − 5𝑥2 + 6 = 0  (𝑄 上可約)のガロア群𝐺 

                𝑓(𝑥) = 𝑥4 − 5𝑥2 + 6 

     = (𝑥2 − 2)(𝑥2 − 3) 

これは、𝐿 = 𝑄(√2, √3) 上で 

𝑓(𝑥) = (𝑥 + √2)(𝑥 − √2)(𝑥 + √3)(𝑥 − √3) と 

異なる 1 次因数の積に分解されるから 

𝐿 が𝑓(𝑥) の最小分解体で 

    𝑖 ∶   √2 → √2     , √3 → √3      

                   𝜎 ∶   √2 → √2     , √3 → −√3  

                    𝜏 ∶   √2 → −√2   , √3 → √3 

                 𝜎𝜏 ∶   √2 → −√2   , √3 → −√3 

とすれば、  𝑥1 = −√2 = 𝛼  , 𝑥2 = √2 = 𝛽  , 

𝑥3 = −√3 = 𝛾  , 𝑥4 = √3 = 𝛿 で表したとき 

 𝑖 = (
𝛼𝛽𝛾𝛿
𝛼𝛽𝛾𝛿

)  ,𝜎 = (
𝛼𝛽𝛾𝛿
𝛼𝛽𝛿𝛾

)   , 𝜏 = (
𝛼𝛽𝛾𝛿
𝛽𝛼𝛾𝛿

)   , 𝜏𝜎 = (
𝛼𝛽𝛾𝛿
𝛽𝛼𝛿𝛾

)  となり、 

      𝐺 = 𝐺(𝐿/𝑄)= {𝑖 , 𝜎 , 𝜏 , 𝜎𝜏}  

これは、置換群 {𝑖  , (12)  , (34)  , (12)(34)} に同型で 



さらに、これは、 

               V = {( ) , (12)(34) , (13)(24) , (14)(23) }に同型。（下注） 

（注意） 

W={𝑖  , (12)  , (34)  , (12)(34)} で (1 2) = 𝑎   , (3 4) = 𝑏  とし、 

V = {( ) , (12)(34) , (13)(24) , (14)(23) } で (1 2)(3 4) = 𝑐   , 

(1 3)(2 4) = 𝑑  とすれば、(1 4)(2 3) = 𝑐𝑑 となり、 

同じ群表が得られ、W≅ V といえる。 

     

W                                   V  

          

 

 

 

 

例 7 𝑥4 − 𝑥3 + 𝑥2 − 1 = 0  (𝑄 上可約)のガロア群𝐺 

                𝑓(𝑥) = 𝑥4 − 𝑥3 + 𝑥2 − 1 

     = (𝑥 − 1)(𝑥3 + 𝑥 + 1)  

𝑥 = 1 は、𝑄 の元であり自己同型写像で不変なので 

𝑓(𝑥) のガロア群は、𝑓1(𝑥) = 𝑥3 + 𝑥 + 1 のガロア群に同型で、 

                 𝐷＝− 4 ∙ 13 − 27 ∙ 12 = −31 < 0  より 

        ∴   √𝐷  ∉  𝑄  

∴   𝐺  ≅ 𝑆3   

 

 

例 8 𝑥4 + 𝑥2 + 1 = 0  (𝑄 上可約)のガロア群𝐺 

                𝑓(𝑥) = 𝑥4 + 𝑥2 + 1 

 = 𝑥4 + 2𝑥2 + 1 − 𝑥2 

                           = (𝑥2 + 1)2 − 𝑥2 

 = (𝑥2 + 𝑥 + 1)(𝑥2 − 𝑥 + 1) 

i a b ab

i i a b ab

a a i ab b

b b ab i a

ab ab b a i

() c d cd

() () c d cd

c c () cd d

d d cd () c

cd cd d c ()



これは、𝐿 = 𝑄(√−3 )  上で 

               𝑓(𝑥) = (𝑥 −
1+√−3

2
) (𝑥 −

1−√−3

2
) (𝑥 −

−1+√−3

2
) (𝑥 −

−1−√−3

2
) と 

異なる 1 次因数の積に分解されるから、𝐿 が𝑓(𝑥) の最小分解体で 

    𝑖 ∶   √−3  → √−3           

   𝜎 ∶   √−3  → −√−3       とすれば、 

                    𝑥1 =
1 + √−3

2
= 𝛼  , 𝑥2 =

1 − √−3

2
= 𝛽  , 

𝑥3 =
−1+√−3

2
= 𝛾  , 𝑥4 =

−1−√−3

2
= 𝛿 で表したとき 

 𝑖 = (
𝛼𝛽𝛾𝛿
𝛼𝛽𝛾𝛿

)  ,𝜎 =  (
𝛼𝛽𝛾𝛿
𝛽𝛼𝛿𝛾

)  となり、 

      𝐺 = 𝐺(𝐿/𝑄)= {𝑖 , 𝜎 }  

これは、置換群 {𝑖  , (12)(34)} に同型で、𝑆2  に同型である。 
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